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a b s t r a c t

Background: Theta burst stimulation (TBS) is an efficient noninvasive neuromodulation paradigm that
has been widely adopted, clinically. However, the efficacy of TBS treatment remains similarly modest as
conventional 10 Hz repetitive transcranial magnetic stimulation (rTMS).
Objective/hypothesis: To develop a new TBS paradigm that enhances the effects of TMS administration
while maintaining high time-efficiency.
Methods: We describe here a new TMS paradigm, named High-Density Theta Burst Stimulation (hdTBS).
This paradigm delivers up to 6 pulses per burst, as opposed to only 3 in conventional TBS, while
maintaining the inter-burst interval of 200 ms (or 5 Hz) e a critical parameter in inducing long-term
potentiation. This paradigm was implemented on a TMS stimulator developed in-house; its physiolog-
ical effects were assessed in the motor cortex of awake rats using a rodent specific focal TMS coil.
Microwire electrodes were implanted into each rat's limb muscles to longitudinally record motor-evoked
potential (MEP). Four different TBS paradigms (3, 4, 5 or 6 pulses per burst, 200 s per session) were
tested; MEP signals were recorded immediately before (baseline) and up to 35 min post each TBS session.
Results: We developed a stimulator based on a printed-circuit board strategy. The stimulator was able to
deliver stable outputs of up to 6 pulses per burst. Animal experiments (n ¼ 15) revealed significantly
different aftereffects induced by the four TBS paradigms (Friedman test, p ¼ 0.018). Post hoc analysis
further revealed that, in comparison to conventional 3-pulse TBS, 5- and 6-pulse TBS enhanced the af-
tereffects of MEP signals by 56% and 92%, respectively, while maintaining identical time efficiency.
Conclusion(s): A new stimulation paradigm is proposed, implemented and tested in the motor cortex of
awake rats using a focal TMS coil developed in the lab. We observed enhanced aftereffects as assessed by
MEP, with no obvious adverse effects, suggesting the translational potentials of this paradigm.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Transcranial magnetic stimulation (TMS) has evolved into an
important neuromodulation tool for basic and clinical neurosci-
ence. Early clinical trials documented the antidepressant effect of
10 Hz repetitive TMS (rTMS) to the dorsolateral prefrontal cortex
(dlPFC) [1e3], resulting in US Food and Drug Administration

clearance and broad clinic adoption. Notably, compared to the sham
control groups, the efficacy of TMS treatment in these early clinical
trials were modest, and have remained disappointingly moderate
in the years that followed [4,5]. Many approaches have been re-
ported to enhance the effectiveness of TMS treatment, including
patient stratification [6,7], stimulation targets beyond dlPFC [8,9],
more condensed TMS treatment sessions [10], multisite stimulation
[11,12], and new TMS coil designs that can access deeper brain
structures [13,14], etc.

From a technical perspective, TMS employs a brief but strong
magnetic field pulse, inducing electrical stimulation in the brain (a
few thousand amperes and a few thousand volts) [15]. Perhaps due
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to the technical demands as well as patient safety considerations
[16,17], new TMS paradigm designs, which often necessitate
hardware modifications, have been a less explored domain in the
quest for superior TMS outcomes [18e21]. One exception was the
successful development of Theta Burst Stimulation (TBS) [22], a
variation of the classical theta burst paradigm in slice physiology
that is known to optimally induce long term potentiation (LTP) [23],
consistent with a long-standing notion that excitatory rTMS works
by increasing net excitability through an LTP-like phenomenon. In
animal experiments, LTP induction is a complex function of the
intensity and temporal pattern of tetanic stimulation [24e26].
Classical theta burst electrical stimulation that is known to effi-
ciently induce LTP applies multiple pulses at 100 Hz per burst [23].
In contrast, TBS applies 3 pulses per burst, presumably due to the
technical limitations of the TMS system. Unlike the conventional
10 Hz rTMS paradigm, which requires 37.5 min for each treatment
session, intermittent TBS requires only 200 s per session, drastically
improving the time efficiency [22]. Unfortunately, the efficacy of
the TBS paradigm remains similarly modest [27]. Furthermore,
simply increasing the duration of the TBS sessions does not
necessarily lead to stronger neuromodulation effects. Indeed,
Gamboa and colleagues [28] documented a reversal of the theta
burst aftereffects with prolonged stimulation: by doubling the
duration of an intermittent or continuous TBS session (iTBS or
cTBS), the conventional facilitatory aftereffect of iTBS became
inhibitory; and the normally inhibitory aftereffect of cTBS con-
verted to facilitatory. These data, seemingly counterintuitive,
highlight the complexity of TMS-induced plasticity.

Physiologically, there is a limited understanding of how TMS
exerts its effects in the stimulated loci and in the interconnected
network, which also hinders the development of more efficacious
TMS paradigms [5,29]. The electric field produced by a TMS coil is
invariably stronger in superficial than in deep cortical layers [30].
Locally, upper layer interneurons and layer 2/3 pyramidal neurons
likely experience the strongest electric field modulation; layer 5
pyramidal dendrites that extend to upper layers and synapse with
interneurons will likely experience strong electric field modulation
as well. At a network level, the activation of layer 2e3 long-range
fibers and deep layer projecting neurons likely modulate cellular
activity of interconnected brain areas. While human research can
shed light on the physiological process underlying TMS [31], animal
models permit invasive manipulations and could be valuable in
understanding the cellular and neurochemical processes induced
by acute and longitudinal TMS [32e38].

However, for preclinical studies to be translational, the spatial
focality and temporal patterns of animal TMS should mimic human
TMS conditions. So far, the best-achieved focality with commer-
cially available rodent TMS coils was half-hemispherical stimula-
tion [39]. Given the complex effects of TMS on local neural circuits
and interconnected networks as described above, and considering
that human TMS modulates anatomically specific brain regions
(such as the thumb representation of the motor cortex), the lack of
focality in an animal TMS coil, in comparison, raises the question of
face validity [37]. This limits our ability to draw spatially relevant
neurobiological conclusions from preclinical models and, ulti-
mately, our ability to inform clinical intervention. Perhaps, due to
the lack of consensus on a valid animal model for TMS, most studies
aiming at enhancing therapeutic efficacy of TMS treatment have
been conducted in human subjects, largely on a trial-and-error
basis.

The goal of this study is to develop a new TMS paradigm that
enhances the efficacy while maintaining high time efficiency, as is
in conventional TBS. We hypothesize that stronger aftereffects can
be induced by increasing the number of pulses per burst, while
maintaining the inter-burst interval at 200 ms (5 Hz). To this end,

we have developed a new stimulator that is capable of generating
bursts of TMS pulses, with the number of pulses per burst ranging
from 3 to 6, herein coined High-Density Theta Burst Stimulation
(hdTBS); in the meantime, the inter-burst interval remained at
200 ms e a critical parameter that has been experimentally
demonstrated to optimally induce LTP [23,26]. We have assessed
the aftereffects of the hdTBS paradigm in rat motor cortex. The
animal experiments leverage recent technological developments
within the lab, which includes a focal TMS coil specific for rodent
animals [40] and the platform of TMS administration in awake rats
[41], allowing for consistent and precise TMS administration across
sessions and across animals, avoiding confounds from anesthesia
[38]. Motor-evoked potential (MEP)was longitudinally measured in
the activated muscles and was used as the metric to assess the
effects of TMS, in line with human literature [19,21,22,29,42e44].
Results demonstrate that, in comparison to conventional TBS, the
new TMS paradigm produces strongermodulation inMEP signal. To
the best of our knowledge, this is the first report of a TMS device
that delivers condensed TBS up to 6 pulses per burst. This tech-
nology, along with the focal TMS coil and the awake rat model,
opens novel avenues for developing safe and more efficacious TMS
paradigms and for investigating the neurobiological mechanism of
TMS.

2. Material and methods

2.1. Longitudinal MEP recording in rats

MEP, a measure of electromyographic (EMG) signal in the acti-
vated muscle induced by stimulation of the corresponding motor
cortex, has been conventionally employed as the metric to quan-
titatively and conveniently assess TMS effects [42,45]. While an
EMG signal can be readily acquired in humans using surface elec-
trodes, consistent EMG recording in an awake rat is challenging
since rats do not readily comply with the motionless requirement.
Thus, we have adopted a rodent EMG recording approach previ-
ously reported by Tysselling and colleagues [46], as detailed below.

EMG electrodes were constructed in-house: soft 7-strand
annealed stainless steel microwires, 0.025 mm in diameter (A-M
systems, Washington, USA, cat. No. 793200), were cut to 13 cm in
length; the insulation coat from one end of the wire was stripped
for 3 mm, and then press-connected to a female socket (Model
E363/0, P1 Technology, USA). Then, two or more sockets were
inserted into a 6-channel electrode pedestal (Model: MS363, P1
Technology, USA). The pedestal and the microwires were attached
to a circular Marlex mesh and secured with dental cement.
Following, a small portion (about 2mm) of the insulation coat, 5 cm
away from the other end, was carefully stripped. This de-insulated
portion was the active contact to sense the EMG signal. Fig. 1B
shows 4 electrode wires connected to a pedestal.

The rats were anesthetized using isoflurane and electrodes were
implanted as a “backmount,” using a method described previously
[46]. After one week of surgical recovery, the microelectrodes were
interfaced to a BIOPAC system (BIOPAC Systems Inc, CA, USA) via a
6-pin male connector (Model: 363e441/6, P1 Technology, USA). A
standard EEG pad was also connected to the tail to serve as the
ground electrode.

2.2. Headpost implantation for consistent TMS positioning

We previously reported the design of a focal TMS coil specific for
a rodent brain [40]. The key to this novel design was the intro-
duction of a small magnetic core that enhanced and focused the
magnetic field (see Fig. 2). The high coil focality raises a challenge
for TMS administration, namely, how to consistently position the
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coil to the region of interest. We have developed a strategy to
address this question [41]: implanting a headpost onto the rat skull
to serve as a reference and a detachable coil guide to efficiently
position the TMS coil to the region of interest (hindlimb motor
cortex, M1HL). Fig. 1A and B illustrate the surgical preparation.

2.3. Animal habituation for TMS administration

To mitigate animal stress during TMS administration, naive rats
were handled and habituated to the TMS environment for one
week using the procedures reported previously [41]. Sham TMS

Fig. 1. Customized microwire electrodes (A) were surgically implanted into the rat biceps femoris and gastrocnemius muscles (B) for longitudinal EMG recording. The white arrow
in (B) indicates the microwire electrode. A headpost was implanted on the rat skull, serving as the reference to consistently position the customized focal TMS coil [40] (shown in C)
across sessions and across animals. The circle and arrow in (E) indicate a small magnetic core that enhances and focuses the magnetic field. The headpost was carefully designed
such that the hotspot of the TMS coil targeted the region of interest (the hindlimb motor cortex).

Fig. 2. (A) Experimental design demonstrating the effects of TMS on MEP signal. Rats received one type of TBS administration on a given day; the order of TBS paradigm was
randomized. MEP was recorded at pre-TBS baseline and up to 35 min post-TBS. (B) shows conventional TBS: each burst consists of 3 pulses, with an inter-burst interval of 200 ms.
(C) Shows hdTBS with 6 pulses per burst. Inter-burst interval remained at 200 ms; inter-pulse-interval within each burst was 22 ms. hdTBS with 4 and 5 pulses per burst are not
shown for visual clarity.
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was administered at 5% of the motor threshold for 5 min per day
with the rat being held underneath the coil. Fruit treats were given
as a reward following the habituation session to reduce stress
associated with habituation training.

2.4. Acute aftereffects of intermittent TBS

TBS pulses were delivered at 2 s ON and 8 s OFFwith a total of 20
repetitions [22]. The number of pulses per burst was either 3, 4, 5 or
6. We employed a within-subject design: for each rat, one TBS
paradigm was randomly assigned on a given day; the inter-burst-
interval remained constant at 200 ms. Each TBS session lasted for
200 s (Fig. 2).

The stimulation was delivered using a stimulator developed in-
house (see below). During TMS administration, 3D printed coil
guides attached to the implanted headposts on awake rats were
used to direct the focal point of the coil to the target region on the
head surface (Fig. 1C). Rats were held under the TMS coil for the full
treatment session with the same holding method used in habitu-
ation. Motor threshold for each rat was measured on day 0, which
was defined as the TMS power that caused contralateral hindlimb
movement in 50% of the stimulation. TMS powerwas at 100%motor
threshold across the 4 testing days.

We measured MEP at the following time points: pre-TBS base-
line, 5, 10, 15, 20, 25 and 35 min post-TBS. This was done by
delivering single-pulse TMS every 5 s, with a total of 10 pulses. The
EMG signal was band-pass filtered (100e5000 Hz), amplified
by � 2000, and sampled at 10,000 Hz (BIOPAC system).

Sixteen adult Sprague-Dawley rats (12 male, 4 females) were
used in this study. Two rats received bilateral electrode implanta-
tion (for mapping the focality of the TMS coil), while the rest
received unilateral implantation (for studying the aftereffects of
TBS). One rat with bilateral electrodes also completed the TBS study
(n¼ 15). All experimental procedures were approved by the Animal
Care and Use Committee at NIDA.

2.5. Development of the hdTBS stimulator

A TMS stimulator typically employs high-voltage capacitors to
store energy. Semiconductor switches such as an insulated gate
bipolar transistor (IGBT) or a silicon-controlled rectifier (SCR) are
used to control energy discharge from the capacitor to a TMS coil,
generating desired pulses [45e50]. Pulsed electrical current could
cause voltage spikes within the system. Two recent studies [51,52]
evaluated the insulation properties and stray inductance of bus
designs based on the printed-circuit board (PCB) in high-voltage
(up to 16 kV), pulsed current applications. Inspired by these two
studies, we implemented a PCB bus design for the high-voltage
components of the TMS system as shown in Fig. 3. The PCB bus
contains 16 sub-layers. Each of the two high-voltage layers and the
ground layers contain 7 sub-layers (thickness 0.1 � 7 mm). These
connections were insulated from each other, which were designed
to sustain at least 4.5 kV. The coordinates of the contact pads on the
PCB bus were carefully designed to match the layouts of the high-
power semiconductor modules. The PCB bus board was 6.5 mm in
thickness and weighed 1.56 kg. All the high-power components
were integrated on the PCB bus, resulting in a compact high-power
unit for TMS (Fig. 3B). The three-dimensional layout of the stimu-
lator was also optimized to reduce stray inductance to as small as
20 nH at 5 kHz (the connection between the capacitor and the IGBT
collector, not including the capacitors). Pulse timing was pro-
grammed on a microprocessor. Energy storage capacitors (C1, C2)
were charged with direct-current power supplies (PSU1, and PSU2,
model: 152 A-3 KV, TDK Lambda Americas, New Jersey, USA), and
the stimulator delivered up to 6 pulses per burst at an inter-burst

interval of 200 ms. The inter-pulse-interval within each burst was
22ms. A further increase in frequency and the number of pulses per
burst is possible with more powerful direct-current power sup-
plies. Fig. 3C illustrates the stimulator circuit. Biphasic TMS pulses
were generated by sequentially turning ON and OFF the two IGBT
units, allowing for energy transfer among C1, L, and C2. The high-
voltage circuit topology is similar to Ref. [53] except that the
active snubber circuits across L were eliminated because we
observed only minor oscillation following each pulse. Notably, a
stray-inductance minimizing the PCB-based snubber circuit and
improved laminated bus bars were recently described in a multi-
level TMS device that delivered wide output ranges and ultra-brief
pulses [54].

2.5.1. Data analysis
The amplitudes of MEP signals (peak-to-peak) were identified

using BIOPAC software. We first examined the normality of the data
distribution. This was done by pooling the data across time win-
dows and across animals, which were subject to Shapiro-Wilk and
Chi-Square statistics. We found that the MEP data were non-
normally distributed (p < 0.0001). We thus performed two types
of statistical analyses: 1) a non-parametric test on the raw data; (2)
we pre-processed the data using the Box-Cox transformation so
that the data were approximately normally distributed [55], fol-
lowed by parametric statistical analysis as detailed below.

2.5.1.1. Non-parametric statistical analysis. Given that the primary
goal of our animal experiment was to examine whether hdTBS
induced stronger aftereffects than conventional TBS, we calculated
the area-under-curve (AUC) of the MEP signal across the 35 min
time window post-TBS under each pulse-type condition (3-, 4-, 5-
or 6-pulse TBS) for each individual animal, which was normalized
to each animal's pre-TBS baseline. We performed the Friedman test
with Pulse Type as the factor to examine the main effect, followed
by post-hoc analyses using the Wilcoxon signed rank tests, which
were subjected to multiple-comparison correction using the
Benjamini-Hochberg method.

2.5.1.2. Parametric statistical analysis. To further investigate
whether there is any TIME effect and Time� Pulse Type interaction,
we performed Box-Cox transformation [55] of the raw data to
reduce skewness. A range of b values were tested to examine the
normality of the data using Shapiro-Wilk and Chi-Square statistics.
We found that data were approximately normally distributed after
Box-Cox transformation with b¼0.1 (p > 0.2).

We subsequently performed two-way repeated measures
ANOVA with the Time and the Pulse Type as the two factors. This
was followed by post-hoc pairwise two-sided t-tests, corrected for
multiple comparisons (Benjamini-Hochberg). Statistical computing
was carried out in R package. A corrected p < 0.05 was considered
significant.

3. Results

3.1. Stable current output from the hdTBS stimulator

Since energy loss is inevitable in pulse generation, a critical
question is: how stable can the output current be as the number of
pulses per burst increases? We measured coil current by pro-
gramming the system to output up to 6 pulses per burst. Fig. 4
shows raw plots on a Tektronix Oscilloscope (Model DP02024B)
using a Rogowski current waveform transducer (Power Measure-
ments, Ltd., Nottingham, UK. Model #: CWT30, peak current 6000
A, frequency range: 2 Hz to 30 MHz, sensitivity: 1 mV/A). The first
pulse had a peak-to-peak amplitude of ± 3.0 kA; the last one

Q. Meng, H. Nguyen, A. Vrana et al. Brain Stimulation 15 (2022) 833e842

836



had þ2.92/-2.88 kA. The maximum difference in pulse amplitude
across the 6 pulses was 4%. As we further increased the number of
pulses per burst to 7, an unstable current output to the TMS coil was
detected and was thus not explored. We concluded that the un-
stable output was due to the constraints of the power supply units
(PSU1 and PSU2), whose maximum capacitor-charging power was
limited to 1500 W.

3.2. MEP induced by TMS of the motor cortex in the hindlimb region

We next conducted animal experiments using this stimulator.
As a first step, we measured the MEP signal in the rat motor cortex.

With the headpost serving as the reference and the coil guide, we
directed the TMS coil toM1HL.Wemapped coil focality by applying
different coil guides to offset the positioning of the TMS coil by
1 mm along 4 directions (rostral, caudal, left, and right), and by
measuring the MEP signal at each location.

As shown in Fig. 5, MEP signal of up to 1.6 mV peak-to-peak was
detected when the TMS coil was aimed at the center of the hin-
dlimb motor cortex (coordinates relative to bregma: anterior-
posterior 1.8 mm; medial-lateral 2.5 mm) [56]. The amplitude
diminished substantially as we offset the coil by 1 mm. These data
are consistent with our previous estimation: the rodent coil had a
focality of 2 mm [40,41].

Fig. 3. Illustration of the hdTBS stimulator. The stimulator was based on the printed circuit board (PCB) design to reduce circuit inductance and resistance. (A) PCB bus board is
shown in (a), with the copper layouts of the high-voltage layers and the ground layers illustrated in (b). High-voltage connections are in the middle layers except the contact pads
are exposed on the surface layer. As an example, (c) illustrates circuit connections with the PCB board. (B) A prototype of the hdTBS stimulator. (C) Schematic diagram of the control
unit for the stimulator. The high-power unit was mounted on the PCB board specifically designed to sustain high current and high voltage and was isolated from low voltage units.
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3.3. Comparisons of the aftereffects following a single session of
intermittent TBS

Previous human TMS studies measured the MEP signal pre- and
post-TMS administration as the metric to assess the effects of TMS
[22,57]. We have adopted a similar approach. The duration of the
stimulation was kept constant (200 s), while the number of pulses
per burst varied. As an example, Fig. 6 shows the MEP signal pre-
and post-TBS under two conditions. With 6 pulses per burst,
apparent enhancement in MEP amplitudes was seen at 10 and
25 min post-TMS; modest enhancement was seenwith 3 pulses per
burst, as indicated by the arrows.

We observed variability in the baselineMEP signal across animals
and across days within the same animal. This is not unexpected,
given that the specific locations of electrode implantation cannot be

guaranteed to be identical across animals, and that the electrode
contact could experience minor displacement within leg muscles
across days due to the animals’movement. We normalized the post-
TMS MEP signal to the pre-TMS baseline value and performed non-
parametric statistical analysis. Results are summarized in Fig. 7.

Fig. 7A shows the MEP signal across the 35 min post-TBS win-
dows, averaged across animals (mean± standard deviation, n¼ 15).
Since the waveforms under the 4 pulse types did not follow a
specific temporal pattern (see Fig. 7A), we calculated the AUC under
each TBS condition, which was subject to the Friedman test with
Pulse Type as the factor. There was a significant main effect of Pulse
Type (p ¼ 0.018). Post-hoc Wilcoxon signed rank tests revealed
significant enhancement in the AUC values in both the 5-pulse and
6-pulse TBS conditions compared to those in the 3-pulse TBS:
before multiple-comparison correction: p ¼ 0.012 for 3-P vs. 5-P;

Fig. 4. Consistency in electric current output of the hdTBS stimulator. The stimulator was programmed to output 3 kA pulsed electric current to the TMS coil shown in Fig. 1. The
amplitude of the last pulse reduced by 4% in comparison to the first one.

Fig. 5. Mapping the focality of the rodent specific TMS coil. The headpost (see Fig. 2) served as the reference to direct the TMS coil to the desired location. As the coil aimed at the
center of the hindlimb representation of the motor cortex, up to 1.6 mV (peak-peak) MEP signal was detected, which diminished substantially when the coil was offset by 1 mm. The
blue arrow indicates artifacts resulting from the TMS pulse. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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p¼ 0.010 for 3-P vs. 6-P. Furthermore, p¼ 0.037 for both conditions
after a correction for multiple comparisons (Fig. 7B). The difference
in AUC values under 3-P vs. 4-P was non-significant (p¼ 0.082 after
multiple-comparison correction, and p ¼ 0.018 before the
correction).

We also performed a Box-Cox transformation so that the data
reached normal distribution, followed by parametric statistical
analyses. The results of this transformation are summarized in the
Supplemental Materials. Briefly, two-way repeated measured
ANOVA revealed significant main effects in both the Time
(p ¼ 0.002) and Pulse Type (p ¼ 0.046), but no significant interac-
tion of Time � Pulse Type was expressed.

4. Discussion

Enhancing the therapeutic efficacy of TMS treatment has been
an active research theme in the neuromodulation field. Most
studies were conducted in human subjects using existing rTMS
technologies, and largely on a trial-and-error basis. While clinical

trials ultimately decide the fate of any interventions, perhaps a
more systematic approach is to develop and test a TMS technology
in animal models first, and then, hopefully, translate the results
from animals to humans.

In the present study, we have developed a stimulator that is able
to deliver the theta burst paradigm with up to 6 pulses per burst.
The utility of the hdTBS paradigm was demonstrated in the rat
motor cortex: a significant enhancement in aftereffects was
detected in 5- and 6-pulse TBS, more than in conventional 3-pulse
TBS. Two logical questions remain. First, since 6-pulse Theta Burst
effectively doubles the dose of a conventional 3-pulse TBS. Will this
new TBS paradigm be tolerated by patients? Of the 16 rats tested,
we observed no indication of seizure events, nor any behavioral
abnormality after TBS, such as eating, drinking, or grooming, etc.
Second, the aftereffects were assessed with a MEP signal in the
activated muscles. Will the enhanced aftereffects be translated to
improved treatment outcomes when applied to conventional TMS
targets, such as the dlPFC? Future studies in human subjects can
address these important questions.

Fig. 6. RawMEP signal under two TBS conditions (3 and 6 pulses per burst) are shown. Red arrows indicate enhancement in MEP amplitude post-TBS administration relative to pre-
TBS baseline. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. (A) Averaged MEP signal across animals under the conditions of 3, 4, 5, and 6 pulses per burst. MEP amplitude was normalized to pre-TBS baseline. Area under the 35 min
post-TBS window was calculated (area-under-curve, AUC) for each TBS condition, which was subject to non-parametric statistical comparisons. Friedman test revealed significant
difference in AUC among the 4 TBS conditions (p ¼ 0.018). Post-hoc Wilcoxon signed rank tests further revealed significantly higher AUC values under 5- and 6-pulse TBS than under
the 3-pulse TBS condition (before multiple-comparison correction: p ¼ 0.012 for 3-P vs. 5-P and p ¼ 0.010 for 3-P vs. 6-P. p ¼ 0.037 for both conditions after correction for multiple-
comparisons). Data are presented as mean ± standard deviation across animals (n ¼ 15). Abbreviation: a. u., arbitrary unit.
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Our hdTBS is based on adding more pulses to the burst period,
while keeping the interval between two neighboring pulses con-
stant, which increases the burst duration. Alternatively, the burst
period could have been kept constant by shortening the inter-pulse
interval, potentially enabling 100 Hz per burst, as is in classical
electrical TBS. In this initial implementation, the peak capacitor-
charging power (PSU1, PSU2 in Fig. 3) was limited to 1500 W. In
principle, employing more powerful capacitor-charging power
supplies or interleaving two 50 Hz hdTBS units could realize 100 Hz
hdTBS. Experiments on animals would be ideal to study the safety
profile and potential therapeutic effects of 100 Hz hdTBS.

The standard deviation of the MEP signal induced by 5- and 6-
pulse TBS are visibly higher than that induced by 3-pulse TBS
(Fig. 7). Indeed, our data normality analysis revealed that the de-
gree of skewness in the pooled MEP data was primarily attributed
to 5- and 6-pulse TBS; MEP data from 3- and 4-pulse TBS were
normally distributed. The reasons for this observation are unknown
but might be related to the possibility that 5- and 6-pulse TBS
perturbs the balance of excitatory and inhibitory local circuits more
aggressively than 3-pulse TBS does, inducing a strong non-linear
neural output from the motor cortex. The implications of such
variability in TMS treatment are of interest to explore.

5. Face-validity of the rat TMS model

Rodent animals, such as rats and mice, have been the dominant
species in preclinical research, with many cellular and molecular
tools specifically developed over the past decades. There have been
efforts to develop a rodent model of TMS, and to back-translate
findings from human studies to rodent animals with variable suc-
cesses, for example, Refs. [39,58e62]. Given the dramatic differ-
ences in brain sizes between rodent animals and humans, a critical
technical question is the spatial focality of the TMS coil [63], as
pointed out by Rotenberg and colleagues [37].

Due to poor coil efficiency, electromechanical stress and Joule
heating [64], it would appear impractical to design a rodent-
specific TMS coil by simply reducing the coil size. We previously
proposed a new coil design strategy to deal with this technical
challenge [40]: instead of planarly distributing energy as seen in
most human TMS coils, we distributed energy vertically and used a
magnetic core to guide, enhance and focus the magnetic flux to the
end of the coil, and achieved suprathreshold, unilateral motor
response in anesthetizedmice [40] and in awake rats [41]. Based on
the neuroanatomy of the rat motor cortex, we estimated the coil
focality to be about 2 mm. In the present study, we mapped the
focality of the TMS coil based on MEP response, and further
confirmed this (see Fig. 5). We routinely observe unilateral motor
response to TMS stimulation, which we believe, to some degree,
mimics TMS in humans.

6. Limitations

Due to technical complexity, we employed a within-subject
design to evaluate the aftereffects of TBS administration. Since
TMS has an accumulative effect in the stimulus loci and in the
interconnected network, our data acquired at the last (fourth) day
might be confounded by TMS effects from the previous 3 days.
However, since the specific TMS paradigm (3-, 4-, 5- or 6-pulse TBS)
at a specific date was randomized across animals and across days,
such accumulative TMS effects should not affect the conclusion. But
this design likely contributed to the high data variability seen in
Fig. 7.

In summary, this study reports a novel TMS paradigm. It
maintains a time efficiency identical to conventional TBS, but de-
livers up to 6 pulses per burst, doubling the TMS dose. This new

paradigm significantly enhanced the aftereffects of TBS. This tech-
nology and the new animal model open novel avenues for devel-
oping a safe and more efficacious TMS paradigm.

CRediT authorship contribution statement

Qinglei Meng: Formal analysis, Writing e original draft,
designed experiment, performed experiment, analyzed data, wrote
the paper. Hieu Nguyen: Formal analysis, Writing e original draft,
designed experiment, performed experiment, analyzed data, wrote
the paper. Antonia Vrana: Writing e original draft, performed
experiment, wrote the paper. Simone Baldwin: Writing e original
draft, performed experiment, wrote the paper. Charlotte Qiong Li:
Writing e original draft, performed experiment, wrote the paper.
Antonia Giles: Writing e original draft, performed experiment,
wrote the paper. Jun Wang: Writing e original draft, designed
experiment, performed experiment, wrote the paper. Yihong Yang:
Conceptualization, Writing e original draft, conceptualized the
study, wrote the paper. Hanbing Lu: Conceptualization, Formal
analysis, Writing e original draft, Conceptualization, designed
experiment, performed experiment, analyzed data, wrote the
paper.

Declaration of interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests:

US patent about the high-density theta burst stimulation was
filed in December of 2021 (application number: 63/286,229; NIDA
EIR: 07627).

Acknowledgement

We would like to thank B. Douglas Ward at the Medical College
of Wisconsin and Thomas J. Ross at NIDA for discussions on sta-
tistical questions. This work was supported in part by the National
Institute on Drug Abuse Intramural Research Program, NIH.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.brs.2022.05.017.

References

[1] O'Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al.
Efficacy and safety of transcranial magnetic stimulation in the acute treatment
of major depression: a multisite randomized controlled trial. Biol Psychiatr
2007;62:1208e16.

[2] George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P,
et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves
mood in depression. Neuroreport 1995;6:1853e6.

[3] Brunoni AR, Chaimani A, Moffa AH, Razza LB, Gattaz WF, Daskalakis ZJ, et al.
Repetitive transcranial magnetic stimulation for the acute treatment of major
depressive episodes: a systematic review with network meta-analysis. JAMA
Psychiatr 2017;74:143e52.

[4] Berlim MT, Eynde F van den, Tovar-Perdomo S, Daskalakis ZJ. Response,
remission and drop-out rates following high-frequency repetitive transcranial
magnetic stimulation (rTMS) for treating major depression: a systematic re-
view and meta-analysis of randomized, double-blind and sham-controlled
trials. Psychol Med 2014;44:225e39.

[5] Eshel N, Keller CJ, Wu W, Jiang J, Mills-Finnerty C, Huemer J, et al. Global
connectivity and local excitability changes underlie antidepressant effects of
repetitive transcranial magnetic stimulation. Neuropsychopharmacology
2020;45:1018e25.

[6] Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al.
Resting-state connectivity biomarkers define neurophysiological subtypes of
depression. Nat Med 2017;23:28e38.

Q. Meng, H. Nguyen, A. Vrana et al. Brain Stimulation 15 (2022) 833e842

840

https://doi.org/10.1016/j.brs.2022.05.017
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref1
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref1
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref1
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref1
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref1
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref2
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref2
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref2
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref2
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref3
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref3
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref3
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref3
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref3
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref4
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref4
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref4
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref4
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref4
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref4
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref5
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref5
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref5
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref5
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref5
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref6
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref6
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref6
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref6


[7] Corlier J, Carpenter LL, Wilson AC, Tirrell E, Gobin AP, Kavanaugh B, et al. The
relationship between individual alpha peak frequency and clinical outcome
with repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major
Depressive Disorder (MDD). Brain Stimul 2019;12:1572e8.

[8] Kreuzer PM, Downar J, de Ridder D, Schwarzbach J, Schecklmann M,
Langguth B. A comprehensive review of dorsomedial prefrontal cortex rTMS
utilizing a double cone coil. Neuromodulation 2019;22(8):851e66.

[9] Bakker N, Shahab S, Giacobbe P, Blumberger DM, Daskalakis ZJ, Kennedy SH,
et al. rTMS of the dorsomedial prefrontal cortex for major depression: safety,
tolerability, effectiveness, and outcome predictors for 10 Hz versus intermit-
tent theta-burst stimulation. Brain Stimul 2015;8:208e15.

[10] Desmyter S, Duprat R, Baeken C, Van Autreve S, Audenaert K, van Heeringen K.
Accelerated intermittent theta burst stimulation for suicide risk in therapy-
resistant depressed patients: a randomized, sham-controlled trial. Front
Hum Neurosci 2016;10:480.

[11] Leuchter AF, Cook IA, Feifel D, Goethe JW, Husain M, Carpenter LL, et al.
Efficacy and safety of low-field synchronized transcranial magnetic stimu-
lation (sTMS) for treatment of major depression. Brain Stimul 2015;8:
787e94.

[12] Pallanti S, Bernardi S, Di Rollo A, Antonini S, Quercioli L. Unilateral low fre-
quency versus sequential bilateral repetitive transcranial magnetic stimula-
tion: is simpler better for treatment of resistant depression? Neuroscience
2010;167:323e8.

[13] Roth Y, Zangen A, Hallett M. A coil design for transcranial magnetic stimu-
lation of deep brain regions. J Clin Neurophysiol 2002;19:361e70.

[14] Deng ZD, Lisanby SH, Peterchev AV. Coil design considerations for deep
transcranial magnetic stimulation. Clin Neurophysiol 2014;125:1202e12.

[15] Jalinous R. Technical and practical aspects of magnetic nerve stimulation.
J Clin Neurophysiol 1991;8:10e25.

[16] Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Group S of TC. Safety, ethical
considerations, and application guidelines for the use of transcranial magnetic
stimulation in clinical practice and research. Clin Neurophysiol 2009;120:
2008e39.

[17] Bae EH, Schrader LM, Machii K, Alonso-Alonso M, Riviello JJ, Pascual-Leone A,
et al. Safety and tolerability of repetitive transcranial magnetic stimulation in
patients with epilepsy: a review of the literature. Epilepsy Behav 2007;10:
521e8.

[18] Hamada M, Terao Y, Hanajima R, Shirota Y, Nakatani-Enomoto S,
Furubayashi T, et al. Bidirectional long-term motor cortical plasticity and
metaplasticity induced by quadripulse transcranial magnetic stimulation.
J Physiol 2008;586:3927e47.

[19] Nakatani-Enomoto S, Hanajima R, Hamada M, Mochizuki H, Kobayashi S,
Enomoto H, et al. Some evidence supporting the safety of quadripulse stim-
ulation (QPS). Brain Stimul 2011;4:303e5.

[20] Thickbroom GW, Byrnes ML, Edwards DJ, Mastaglia FL. Repetitive paired-
pulse TMS at I-wave periodicity markedly increases corticospinal excit-
ability: a new technique for modulating synaptic plasticity. Clin Neurophysiol
2006;117:61e6.

[21] Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in
the human motor cortex by paired associative stimulation. Brain 2000;123(Pt
3):572e84.

[22] Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimu-
lation of the human motor cortex. Neuron 2005;45:201e6. https://doi.org/
10.1016/j.neuron.2004.12.033.

[23] Larson J, Wong D, Lynch G. Patterned stimulation at the theta frequency is
optimal for the induction of hippocampal long-term potentiation. Brain Res
1986;368:347e50.

[24] Malenka RC. Postsynaptic factors control the duration of synaptic enhance-
ment in area CA1 of the hippocampus. Neuron 1991;6:53e60.

[25] Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentia-
tion in the hippocampus. Nature 1993;361:31e9.

[26] Larson J, Lynch G. Induction of synaptic potentiation in hippocampus by
patterned stimulation involves two events. Science 1986;232:985e8.

[27] Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P,
et al. Effectiveness of theta burst versus high-frequency repetitive transcranial
magnetic stimulation in patients with depression (THREE-D): a randomised
non-inferiority trial. Lancet 2018;391:1683e92.

[28] Gamboa OL, Antal A, Moliadze V, Paulus W. Simply longer is not better:
reversal of theta burst after-effect with prolonged stimulation. Exp Brain Res
2010;204:181e7.

[29] Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A,
et al. Consensus: motor cortex plasticity protocols. Brain Stimul 2008;1:
164e82.

[30] Heller L, van Hulsteyn DB. Brain stimulation using electromagnetic sources:
theoretical aspects. Biophys J 1992;63:129e38. https://doi.org/10.1016/
S0006-3495(92)81587-4.

[31] Ziemann U, L€onnecker S, Steinhoff BJ, Paulus W. The effect of lorazepam on
the motor cortical excitability in man. Exp Brain Res 1996;109:127e35.

[32] Lenz M, Platschek S, Priesemann V, Becker D, Willems LM, Ziemann U, et al.
Repetitive magnetic stimulation induces plasticity of excitatory postsynapses
on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Struct
Funct 2015;220:3323e37.

[33] Lenz M, Galanis C, Müller-Dahlhaus F, Opitz A, Wierenga CJ, Szab�o G, et al.
Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nat
Commun 2016;7:10020.

[34] Murphy SC, Palmer LM, Nyffeler T, Müri RM, Larkum ME. Transcranial mag-
netic stimulation (TMS) inhibits cortical dendrites. Elife 2016;5.

[35] Kozyrev V, Eysel UT, Jancke D. Voltage-sensitive dye imaging of transcranial
magnetic stimulation-induced intracortical dynamics. Proc Natl Acad Sci U S A
2014;111:13553e8.

[36] Banerjee J, Sorrell ME, Celnik PA, Pelled G. Immediate effects of repetitive
magnetic stimulation on single cortical pyramidal neurons. PLoS One
2017;12:e0170528.

[37] Vahabzadeh-Hagh AM, Muller PA, Gersner R, Zangen A, Rotenberg A. Trans-
lational neuromodulation: approximating human transcranial magnetic
stimulation protocols in rats. Neuromodulation 2012;15:296e305.

[38] Gersner R, Kravetz E, Feil J, Pell G, Zangen A. Long-term effects of repetitive
transcranial magnetic stimulation on markers for neuroplasticity: differ-
ential outcomes in anesthetized and awake animals. J Neurosci 2011;31:
7521e6.

[39] Rotenberg A, Muller PA, Vahabzadeh-Hagh AM, Navarro X, L�opez-Vales R,
Pascual-Leone A, et al. Lateralization of forelimb motor evoked potentials by
transcranial magnetic stimulation in rats. Clin Neurophysiol 2010;121:
104e8.

[40] Meng Q, Jing L, Badjo JP, Du X, Hong E, Yang Y, et al. A novel transcranial
magnetic stimulator for focal stimulation of rodent brain. Brain Stimul
2018;11:663e5.

[41] Cermak S, Meng Q, Peng K, Baldwin S, Mejias-Aponte C, Yang Y, et al. Focal
transcranial magnetic stimulation in awake rats: enhanced glucose uptake in
deep cortical layers. J Neurosci Methods 2020;339:108709.

[42] Chen R, Gerloff C, Classen J, Wassermann EM, Hallett M, Cohen LG. Safety of
different inter-train intervals for repetitive transcranial magnetic stimulation
and recommendations for safe ranges of stimulation parameters. Electro-
encephalogr Clin Neurophysiol 1997;105:415e21.

[43] Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al.
Corticocortical inhibition in human motor cortex. J Physiol 1993;471:501e19.

[44] Hallett M. Transcranial magnetic stimulation: a primer. Neuron 2007;55:
187e99.

[45] Pascual-Leone A, Valls-Sol�e J, Wassermann EM, Hallett M. Responses to rapid-
rate transcranial magnetic stimulation of the human motor cortex. Brain
1994;117(Pt 4):847e58.

[46] Tysseling VM, Janes L, Imhoff R, Quinlan KA, Lookabaugh B, Ramalingam S,
et al. Design and evaluation of a chronic EMG multichannel detection system
for long-term recordings of hindlimb muscles in behaving mice.
J Electromyogr Kinesiol 2013;23:531e9.

[47] Peterchev AV, Murphy DL, Lisanby SH. Repetitive transcranial magnetic
stimulator with controllable pulse parameters (cTMS). Conf Proc IEEE Eng
Med Biol Soc 2010:2922e6. 2010.

[48] Gattinger N, Moßnang G, Gleich B. flexTMSda novel repetitive transcranial
magnetic stimulation device with freely programmable stimulus currents.
IEEE (Inst Electr Electron Eng) Trans Biomed Eng 2012;59:1962e70.

[49] Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of hu-
man motor cortex. Lancet 1985;325:1106e7.

[50] Jalinous R. Principles of magnetic stimulator design. Handbook of transcranial
magnetic stimulation. London: Arnold; 2002. p. 30e8.

[51] Ravi L, Lin X, Dong D, Burgos R. A 16 kV PCB-based DC-bus distributed
capacitor array with integrated power-AC-terminal for 10 kV SiC MOSFET
modules in medium-voltage inverter applications. IEEE Energy Conversion
Congress and Exposition (ECCE); 2020. p. 3998e4005. 2020.

[52] Xu Y, Feng X, Wang J, Gao C, Burgos R, Boroyevich D, et al. Medium-voltage
SiC-based converter laminated bus insulation design and assessment. IEEE
Journal of Emerging and Selected Topics in Power Electronics 2019;7:
1715e26.

[53] Peterchev AV, Murphy DL, Lisanby SH. Repetitive transcranial magnetic
stimulator with controllable pulse parameters. J Neural Eng 2011;8:036016.

[54] Zeng Z, Koponen LM, Hamdan R, Li Z, Goetz SM, Peterchev AV. Modular
multilevel TMS device with wide output range and ultrabrief pulse capability
for sound reduction. J Neural Eng 2022;19:026008.

[55] Box GEP, Cox DR. An analysis of transformations. J Roy Stat Soc B 1964;26:
211e43. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.

[56] Seong HY, Cho JY, Choi BS, Min JK, Kim YH, Roh SW, et al. Analysis on bilateral
hindlimb mapping in motor cortex of the rat by an intracortical micro-
stimulation method. J Kor Med Sci 2014;29:587e92. https://doi.org/10.3346/
jkms.2014.29.4.587.

[57] Goetz SM, Luber B, Lisanby SH, Murphy DL, Kozyrkov IC, Grill WM, et al.
Enhancement of neuromodulation with novel pulse shapes generated by
controllable pulse parameter transcranial magnetic stimulation. Brain Stimul
2016;9:39e47.

[58] Tang AD, Lowe AS, Garrett AR, Woodward R, Bennett W, Canty AJ, et al.
Construction and evaluation of rodent-specific rTMS coils. Front Neural Circ
2016;10:47.

[59] Muller PA, Dhamne SC, Vahabzadeh-Hagh AM, Pascual-Leone A, Jensen FE,
Rotenberg A. Suppression of motor cortical excitability in anesthetized rats by
low frequency repetitive transcranial magnetic stimulation. PLoS One 2014;9:
e91065.

[60] Gersner R, Dhamne SC, Zangen A, Pascual-Leone A, Rotenberg A. Bursts of
high-frequency repetitive transcranial magnetic stimulation (rTMS), together
with lorazepam, suppress seizures in a rat kainate status epilepticus model.
Epilepsy Behav 2016;62:136e9.

Q. Meng, H. Nguyen, A. Vrana et al. Brain Stimulation 15 (2022) 833e842

841

http://refhub.elsevier.com/S1935-861X(22)00097-3/sref7
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref7
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref7
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref7
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref7
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref8
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref8
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref8
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref8
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref9
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref9
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref9
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref9
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref9
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref10
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref10
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref10
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref10
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref11
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref11
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref11
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref11
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref11
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref12
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref12
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref12
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref12
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref12
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref13
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref13
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref13
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref14
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref14
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref14
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref15
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref15
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref15
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref16
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref16
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref16
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref16
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref16
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref17
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref17
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref17
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref17
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref17
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref18
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref18
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref18
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref18
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref18
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref19
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref19
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref19
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref19
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref20
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref20
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref20
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref20
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref20
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref21
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref21
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref21
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref21
https://doi.org/10.1016/j.neuron.2004.12.033
https://doi.org/10.1016/j.neuron.2004.12.033
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref23
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref23
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref23
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref23
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref24
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref24
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref24
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref25
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref25
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref25
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref26
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref26
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref26
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref27
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref27
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref27
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref27
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref27
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref28
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref28
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref28
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref28
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref29
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref29
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref29
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref29
https://doi.org/10.1016/S0006-3495(92)81587-4
https://doi.org/10.1016/S0006-3495(92)81587-4
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref31
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref31
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref31
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref31
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref32
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref32
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref32
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref32
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref32
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref33
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref33
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref33
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref33
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref34
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref34
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref35
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref35
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref35
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref35
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref36
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref36
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref36
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref37
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref37
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref37
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref37
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref38
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref38
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref38
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref38
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref38
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref39
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref39
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref39
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref39
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref39
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref39
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref40
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref40
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref40
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref40
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref41
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref41
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref41
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref42
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref42
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref42
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref42
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref42
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref43
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref43
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref43
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref44
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref44
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref44
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref45
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref45
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref45
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref45
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref45
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref46
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref46
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref46
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref46
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref46
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref47
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref47
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref47
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref47
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref48
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref48
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref48
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref48
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref48
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref48
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref49
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref49
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref49
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref50
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref50
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref50
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref51
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref51
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref51
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref51
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref51
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref52
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref52
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref52
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref52
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref52
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref53
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref53
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref54
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref54
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref54
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.3346/jkms.2014.29.4.587
https://doi.org/10.3346/jkms.2014.29.4.587
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref57
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref57
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref57
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref57
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref57
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref58
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref58
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref58
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref59
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref59
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref59
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref59
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref60
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref60
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref60
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref60
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref60


[61] Parthoens J, Verhaeghe J, Servaes S, Miranda A, Stroobants S, Staelens S.
Performance characterization of an actively cooled repetitive transcranial
magnetic stimulation coil for the rat. Neuromodulation 2016;19:459e68.

[62] Li B, Virtanen JP, Oeltermann A, Schwarz C, Giese MA, Ziemann U, et al. Lifting
the veil on the dynamics of neuronal activities evoked by transcranial mag-
netic stimulation. Elife 2017;6:e30552.

[63] Alekseichuk I, Mantell K, Shirinpour S, Opitz A. Comparative modeling of
transcranial magnetic and electric stimulation in mouse, monkey, and human.
Neuroimage 2019;194:136e48.

[64] Cohen D, Cuffin BN. Developing a more focal magnetic stimulator. Part I: some
basic principles. J Clin Neurophysiol 1991;8:102e11.

Q. Meng, H. Nguyen, A. Vrana et al. Brain Stimulation 15 (2022) 833e842

842

http://refhub.elsevier.com/S1935-861X(22)00097-3/sref61
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref61
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref61
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref61
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref62
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref62
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref62
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref63
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref63
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref63
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref63
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref64
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref64
http://refhub.elsevier.com/S1935-861X(22)00097-3/sref64

	A high-density theta burst paradigm enhances the aftereffects of transcranial magnetic stimulation: Evidence from focal stimulation of rat motor cortex
	Authors

	A high-density theta burst paradigm enhances the aftereffects of transcranial magnetic stimulation: Evidence from focal sti ...
	1. Introduction
	2. Material and methods
	2.1. Longitudinal MEP recording in rats
	2.2. Headpost implantation for consistent TMS positioning
	2.3. Animal habituation for TMS administration
	2.4. Acute aftereffects of intermittent TBS
	2.5. Development of the hdTBS stimulator
	2.5.1. Data analysis
	2.5.1.1. Non-parametric statistical analysis
	2.5.1.2. Parametric statistical analysis



	3. Results
	3.1. Stable current output from the hdTBS stimulator
	3.2. MEP induced by TMS of the motor cortex in the hindlimb region
	3.3. Comparisons of the aftereffects following a single session of intermittent TBS

	4. Discussion
	5. Face-validity of the rat TMS model
	6. Limitations
	CRediT authorship contribution statement
	Declaration of interest
	Acknowledgement
	Appendix A. Supplementary data
	References


