6 research outputs found

    Neural Responses During Trace Conditioning with Face and Non-Face Stimuli Recorded with Magnetoencephalography

    Get PDF
    During fear conditioning a subject is presented with an initially innocuous stimulus like an image (conditioned stimulus; CS) that predicts an aversive outcome like a mild electric shock (unconditioned stimulus; UCS). Subjects rapidly learn that the CS predicts the UCS, and show autonomic fear responses (CRs) during the presentation of the CS. When the CS and the UCS coterminate, as is the case for delay conditioning, individuals can acquire CRs even if they are unable to predict the occurrence of the UCS. However when there is a temporal gap between the CS and the UCS, CR expression is typically dependent upon explicit awareness of the CS-UCS pairing. Research with non-human animals suggests that both the hippocampus and the prefrontal cortex are needed for trace but not delay fear conditioning, and that communication between these areas may help to maintain the CS during the trace interval. We tested this hypothesis by exposing subjects to differential delay and trace fear conditioning while we recorded their brain activity with magnetoencephalography. Faces and houses served as CSs and an aversive electrical stimulation served as the UCS. As predicted, subjects show evidence of conditioning on both implicit and explicit measures. In addition, there is a learning related increase in theta coherence between the left parahippocampal gyrus and several frontal and parietal cortical regions for trace but not delay conditioning. These results suggest that trace conditioning recruits a network of cortical regions, and that the activity of these regions is coordinated by the medial temporal lobe

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    No full text
    Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    References

    No full text
    corecore