291 research outputs found

    Ciliary microtubule capping structures contain a mammalian kinetochore antigen

    Get PDF
    This is the publisher's version, also available electronically from http://jcb.rupress.org/content/110/3/703.Structures that cap the plus ends of microtubules may be involved in the regulation of their assembly and disassembly. Growing and disassembling microtubules in the mitotic apparatus are capped by kinetochores and ciliary and flagellar microtubules are capped by the central microtubule cap and distal filaments. To compare the ciliary caps with kinetochores, isolated Tetrahymena cilia were stained with CREST (Calcinosis/phenomenon esophageal dysmotility, sclerodactyly, telangiectasia) antisera known to stain kinetochores. Immunofluorescence microscopy revealed that a CREST antiserum stained the distal tips of cilia that contained capping structures but did not stain axonemes that lacked capping structures. Both Coomassie blue-stained gels and Western blots probed with CREST antiserum revealed that a 97-kD antigen copurifies with the capping structures. Affinity-purified antibodies to the 97-kD ciliary protein stained the tips of cap-containing Tetrahymena cilia and the kinetochores in HeLa, Chinese hamster ovary, and Indian muntjak cells. These results suggest that at least one polypeptide found in the kinetochore is present in ciliary microtubule capping structures and that there may be a structural and/or functional homology between these structures that cap the plus ends of microtubules

    PCM-1, A 228-kD centrosome autoantigen with a distinct cell cycle distribution

    Full text link

    Dynactin Is Required for Microtubule Anchoring at Centrosomes

    Get PDF
    The multiprotein complex, dynactin, is an integral part of the cytoplasmic dynein motor and is required for dynein-based motility in vitro and in vivo. In living cells, perturbation of the dynein–dynactin interaction profoundly blocks mitotic spindle assembly, and inhibition or depletion of dynein or dynactin from meiotic or mitotic cell extracts prevents microtubules from focusing into spindles. In interphase cells, perturbation of the dynein–dynactin complex is correlated with an inhibition of ER-to-Golgi movement and reorganization of the Golgi apparatus and the endosome–lysosome system, but the effects on microtubule organization have not previously been defined. To explore this question, we overexpressed a variety of dynactin subunits in cultured fibroblasts. Subunits implicated in dynein binding have effects on both microtubule organization and centrosome integrity. Microtubules are reorganized into unfocused arrays. The pericentriolar components, γ tubulin and dynactin, are lost from centrosomes, but pericentrin localization persists. Microtubule nucleation from centrosomes proceeds relatively normally, but microtubules become disorganized soon thereafter. Overexpression of some, but not all, dynactin subunits also affects endomembrane localization. These data indicate that dynein and dynactin play important roles in microtubule organization at centrosomes in fibroblastic cells and provide new insights into dynactin–cargo interactions

    p16(INK4a) Prevents Centrosome Dysfunction and Genomic Instability in Primary Cells

    Get PDF
    Aneuploidy, frequently observed in premalignant lesions, disrupts gene dosage and contributes to neoplastic progression. Theodor Boveri hypothesized nearly 100 years ago that aneuploidy was due to an increase in centrosome number (multipolar mitoses) and the resultant abnormal segregation of chromosomes. We performed immunocytochemistry, quantitative immunofluorescence, karyotypic analysis, and time-lapse microscopy on primary human diploid epithelial cells and fibroblasts to better understand the mechanism involved in the production of supernumerary centrosomes (more than two microtubule nucleating bodies) to directly demonstrate that the presence of supernumerary centrosomes in genomically intact cells generates aneuploid daughter cells. We show that loss of p16(INK4a) generates supernumerary centrosomes through centriole pair splitting. Generation of supernumerary centrosomes in human diploid epithelial cells was shown to nucleate multipolar spindles and directly drive production of aneuploid daughter cells as a result of unequal segregation of the genomic material during mitosis. Finally, we demonstrate that p16(INK4a) cooperates with p21 through regulation of cyclin-dependent kinase activity to prevent centriole pair splitting. Cells with loss of p16(INK4a) activity have been found in vivo in histologically normal mammary tissue from a substantial fraction of healthy, disease-free women. Demonstration of centrosome dysfunction in cells due to loss of p16(INK4a) suggests that, under the appropriate conditions, these cells can become aneuploid. Gain or loss of genomic material (aneuploidy) may provide the necessary proproliferation and antiapoptotic mechanisms needed for the earliest stages of tumorigenesis

    Basal body stability and ciliogenesis requires the conserved component Poc1

    Get PDF
    Centrioles are the foundation for centrosome and cilia formation. The biogenesis of centrioles is initiated by an assembly mechanism that first synthesizes the ninefold symmetrical cartwheel and subsequently leads to a stable cylindrical microtubule scaffold that is capable of withstanding microtubule-based forces generated by centrosomes and cilia. We report that the conserved WD40 repeat domain–containing cartwheel protein Poc1 is required for the structural maintenance of centrioles in Tetrahymena thermophila. Furthermore, human Poc1B is required for primary ciliogenesis, and in zebrafish, DrPoc1B knockdown causes ciliary defects and morphological phenotypes consistent with human ciliopathies. T. thermophila Poc1 exhibits a protein incorporation profile commonly associated with structural centriole components in which the majority of Poc1 is stably incorporated during new centriole assembly. A second dynamic population assembles throughout the cell cycle. Our experiments identify novel roles for Poc1 in centriole stability and ciliogenesis

    Spectrum of centrosome autoantibodies in childhood varicella and post-varicella acute cerebellar ataxia

    Get PDF
    BACKGROUND: Sera from children with post-varicella infections have autoantibodies that react with centrosomes in brain and tissue culture cells. We investigated the sera of children with infections and post-varicella ataxia and related conditions for reactivity to five recombinant centrosome proteins: γγ-enolase, pericentrin, ninein, PCM-1, and Mob1. METHODS: Sera from 12 patients with acute post-varicella ataxia, 1 with post-Epstein Barr virus (EBV) ataxia, 5 with uncomplicated varicella infections, and other conditions were tested for reactivity to cryopreserved cerebellum tissue and recombinant centrosome proteins. The distribution of pericentrin in the cerebellum was studied by indirect immunofluorescence (IIF) using rabbit antibodies to the recombinant protein. Antibodies to phospholipids (APL) were detected by ELISA. RESULTS: Eleven of 12 children with post-varicella ataxia, 4/5 children with uncomplicated varicella infections, 1/1 with post-EBV ataxia, 2/2 with ADEM, 1/2 with neuroblastoma and ataxia, and 2/2 with cerebellitis had antibodies directed against 1 or more recombinant centrosome antigens. Antibodies to pericentrin were seen in 5/12 children with post-varicella ataxia but not in any of the other sera tested. IIF demonstrated that pericentrin is located in axons and centrosomes of cerebellar cells. APL were detected in 75% of the sera from children with post-varicella ataxia and 50% of children with varicella without ataxia and in none of the controls. CONCLUSION: This is the first study to show the antigen specificity of anti-centrosome antibodies in children with varicella. Our data suggest that children with post-varicella ataxia have unique autoantibody reactivity to pericentrin
    corecore