397 research outputs found
Correlated Binomial Models and Correlation Structures
We discuss a general method to construct correlated binomial distributions by
imposing several consistent relations on the joint probability function. We
obtain self-consistency relations for the conditional correlations and
conditional probabilities. The beta-binomial distribution is derived by a
strong symmetric assumption on the conditional correlations. Our derivation
clarifies the 'correlation' structure of the beta-binomial distribution. It is
also possible to study the correlation structures of other probability
distributions of exchangeable (homogeneous) correlated Bernoulli random
variables. We study some distribution functions and discuss their behaviors in
terms of their correlation structures.Comment: 12 pages, 7 figure
Methane Mitigation:Methods to Reduce Emissions, on the Path to the Paris Agreement
The atmospheric methane burden is increasing rapidly, contrary to pathways compatible with the goals of the 2015 United Nations Framework Convention on Climate Change Paris Agreement. Urgent action is required to bring methane back to a pathway more in line with the Paris goals. Emission reduction from “tractable” (easier to mitigate) anthropogenic sources such as the fossil fuel industries and landfills is being much facilitated by technical advances in the past decade, which have radically improved our ability to locate, identify, quantify, and reduce emissions. Measures to reduce emissions from “intractable” (harder to mitigate) anthropogenic sources such as agriculture and biomass burning have received less attention and are also becoming more feasible, including removal from elevated-methane ambient air near to sources. The wider effort to use microbiological and dietary intervention to reduce emissions from cattle (and humans) is not addressed in detail in this essentially geophysical review. Though they cannot replace the need to reach “net-zero” emissions of CO2, significant reductions in the methane burden will ease the timescales needed to reach required CO2 reduction targets for any particular future temperature limit. There is no single magic bullet, but implementation of a wide array of mitigation and emission reduction strategies could substantially cut the global methane burden, at a cost that is relatively low compared to the parallel and necessary measures to reduce CO2, and thereby reduce the atmospheric methane burden back toward pathways consistent with the goals of the Paris Agreement
A case of chronic recurrent multifocal osteomyelýtýs successfully treated with etanercept
PubMe
MEFV mutations in systemic JIA
Background: Systemic form of juvenile idiopathic arthritis (JIA) is regarded as an autoinflammatory disease. Certain genetic polymorphisms in genes coding inflammatory proteins have been associated with the disease. On the other hand mutations of the MEFV gene cause a monogenic autoinflammatory disease, Familial Mediterranean Fever (FMF).
In a previous study in adult rheumatoid arthritis 3 out of the 25 British patients who developed secondary amyloidosis had a mutation/polymorphism in the MEFV gene.
Aim: To analyse whether mutaions in the MEFV gene had an association with systemic JIA.
Patients and methods: MEFV mutations were screened in a total of 32 systemic JIA patients. All had been classified as systemic JIA according to the Durban JIA criteria. None had disease characteristics that met the Tel Hashomer criteria for the diagnosis of FMF.
Results: 2 carrier for M694V and two patients who were homozygote for MEFV mutations. Both of these patients were among the most severe patients in the group. One had an excellent response to etanercept whereas the other was resistant to anti-TNF and other conventional treatments and had only a partial response to thalidomide. Although the number of severe mutations were increased in this small group of patients with systemic JIA the difference with the Turkish population did not reach statistical significance, but the disease causing mutation (M694V) was significantly high in the patients with systemic JIA(p = 0.02).
Conclusion: However, the severe disease course in the aforementioned patients suggest that MEFV mutations may be a modifying genetic factor in systemic JIA.PubMe
Correction: Exome Sequencing in an Admixed Isolated Population IndicatesNFXL1 Variants Confer a Risk for Specific Language Impairment
Children affected by Specific Language Impairment (SLI) fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile), who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations) in the NFXL1 gene that confers a nonsynonymous change (N150K) and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10–4, 8 variants tested). Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome
BACKGROUND AND OBJECTIVES: Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families.
DESIGN, SETTING, PARTIIPANTS AND MEASUREMENTS: Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes.
RESULTS: In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1, PLCE1, NPHS2, and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome.
CONCLUSIONS: Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome
European chronic kidney disease registries for children not on kidney replacement therapy: tools for improving health systems and patient-centred outcomes
Chronic kidney disease (CKD) in children, from birth to late adolescence, is a unique and highly challenging condition that requires epidemiological research and large-scale, prospective cohort studies. Since its first launch in 2007, the European Society for Paediatric Nephrology/European Renal Association (ESPN/ERA) Registry has collected data on patients on kidney replacement therapy (KRT). However, slowing the progression of CKD is of particular importance and thus the possibility to extend the current registry dataset to include patients in CKD stages 4–5 should be a priority. A survey was sent to the national representatives within the ESPN/ERA Registry to collect information on whether they are running CKD registries. All the representatives from the 38 European countries involved in the ESPN/ERA Registry participated in the survey. Eight existing CKD registries have been identified. General characteristics of the national registry and detailed data on anthropometry, laboratory tests and medications at baseline and at follow-up were collected. Results provided by this survey are highly promising regarding the establishment of an ESPN CKD registry linked to the ESPN/ERA KRT registry and subsequently linking it to the ERA Registry with the same patient identifier, which would allow us to monitor disease progression in childhood and beyond. It is our belief that through such linkages, gaps in patient follow-up will be eliminated and patient-centred outcomes may be improved
Stable isotopic signatures of methane from waste sources through atmospheric measurements
This study aimed to characterize the carbon isotopic signatures (δ13C-CH4) of several methane waste sources, predominantly in the UK, and during field campaigns in the Netherlands and Turkey. CH4 plumes emitted from waste sources were detected during mobile surveys using a cavity ring-down spectroscopy (CRDS) analyser. Air samples were collected in the plumes for subsequent isotope analysis by gas chromatography isotope ratio mass spectrometry (GC-IRMS) to characterize δ13C-CH4. The isotopic signatures were determined through a Keeling plot approach and the bivariate correlated errors and intrinsic scatter (BCES) fitting method. The δ13C-CH4 and δ2H-CH4 signatures were identified from biogas plants (−54.6 ± 5.6‰, n = 34; −314.4 ± 23‰ n = 3), landfills (−56.8 ± 2.3‰, n = 43; −268.2 ± 2.1‰, n = 2), sewage treatment plants (−51.6 ± 2.2‰, n = 15; −303.9 ± 22‰, n = 6), composting facilities (−54.7 ± 3.9‰, n = 6), a landfill leachate treatment plant (−57.1 ± 1.8‰, n = 2), one water treatment plant (−53.7 ± 0.1‰) and a waste recycling facility (−53.2 ± 0.2‰). The overall signature of 71 waste sources ranged from −64.4 to −44.3‰, with an average of −55.1 ± 4.1‰ (n = 102) for δ13C, −341 to −267‰, with an average of −300.3 ± 25‰ (n = 11) for δ2H, which can be distinguished from other source types in the UK such as gas leaks and ruminants. The study also demonstrates that δ2H-CH4 signatures, in addition to δ13C-CH4, can aid in better waste source apportionment and increase the granularity of isotope data required to improve regional modelling
Rapidly progressive glomerulonephritis in a child with Henoch-Schönlein Vasculitis and familial Mediterranean fever
Henoch-Schonlein Vasculitis (HSV) is systemic small vessel vasculitis involving the skin, kidney, joints, and gastrointestinal tract. The proportion of patients reported to have renal involvement varies between 20% and 80%. Rapidly progressive glomerulonephritis (RPGN)is rare syndrome in children, characterized by clinical features of glomerulonephritis (GN) and rapid loss of renal function. We present a severe kidney involvement in a 14 year old boy with HSV in who is carring MEFV mutation. A 14 year old boy had developed sudden onset of palpable purpuric rash on his extensor surfaces of lower extremities. He had elevated an erythrocyte sedimentation rate (ESR) (45 mm/h), C-reactive protein (3.74 mg/dl), serum urea 66 mg/dl, serum creatinine 1.8 mg/dl. Also, he had hypocomplementemia. Antinuclear antibody, anti ds DNA, antineutrophil cytoplasmic antibody, anticardiolipine antibodies were negative. Urinalysis revealed macroscopic hematuria and proteinuria with a 24-h urinary protein excretion of 55 mg/m2/h. The renal biopsy specimen showed crescentic and necrotizing glomerulonephritis. He had also M694V/E148Q compound heterozygote mutation. Clinical symptoms and renal failure resolved with intermittant hemodialysis and medical therapy
- …
