We discuss a general method to construct correlated binomial distributions by
imposing several consistent relations on the joint probability function. We
obtain self-consistency relations for the conditional correlations and
conditional probabilities. The beta-binomial distribution is derived by a
strong symmetric assumption on the conditional correlations. Our derivation
clarifies the 'correlation' structure of the beta-binomial distribution. It is
also possible to study the correlation structures of other probability
distributions of exchangeable (homogeneous) correlated Bernoulli random
variables. We study some distribution functions and discuss their behaviors in
terms of their correlation structures.Comment: 12 pages, 7 figure