research

Correlated Binomial Models and Correlation Structures

Abstract

We discuss a general method to construct correlated binomial distributions by imposing several consistent relations on the joint probability function. We obtain self-consistency relations for the conditional correlations and conditional probabilities. The beta-binomial distribution is derived by a strong symmetric assumption on the conditional correlations. Our derivation clarifies the 'correlation' structure of the beta-binomial distribution. It is also possible to study the correlation structures of other probability distributions of exchangeable (homogeneous) correlated Bernoulli random variables. We study some distribution functions and discuss their behaviors in terms of their correlation structures.Comment: 12 pages, 7 figure

    Similar works

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 01/04/2019