88 research outputs found

    U-Pb zircon dating of the Gruf Complex: disclosing the late Variscan granulitic lower crust of Europe stranded in the Central Alps

    Get PDF
    Permian granulites associated with noritic intrusions and websterites are a common feature of the post-Variscan European crust. Such granulites are common in the Southern Alps (e.g. Ivrea Zone), but occur only in the Gruf Complex in the Central Alps. To understand the geotectonic significance of these granulites, in particular in the context of Alpine migmatisation, zircons from 15 high-grade samples have been U-Pb dated by SHRIMP II analysis. Oscillatory zoned zircons from charnockite sheets, interpreted as melts generated through granulite facies fluid-absent biotite melting at 920-940°C, yield ages of 282-260Ma. Some of these zircons contain inclusions of opx, unequivocally attributable to the granulite facies, thus confirming a Permian age for the charnockites and associated granulites. Two samples from an enclave-rich orthogneiss sheet yield Cambrian and Ordovician zircon cores. Two deformed leucogranites and six ortho- and augengneisses, which compose two-thirds of the Gruf Complex, give zircon ages of 290-260Ma. Most zircons have milky rims with ages of 34-29Ma. These rims date the Alpine amphibolite facies migmatisation, an interpretation confirmed by directly dating a leucosome pocket from upper amphibolite facies metapelites. The Gruf charnockites associated with metre-scale schlieren and boudins of opx-sapphirine-garnet-granulites, websterites and gabbronorites can thus be identified as part of the post-Variscan European lower crust. A geotectonic reconstruction reveals that this piece of lower crust stranded in the (European) North upon rifting of the Neotethys, such contrasting the widespread granulite units in the Southern Alps. Emplacement of the Gruf lower crust into its present-day position occurred during migmatisation and formation of the Bergell Pluton in the aftermath of the breakoff of the European sla

    TerrHum: an iOS application for classifying terrestrial humipedons and some considerations about soil classification

    Get PDF
    International audienceThe name TerrHum is an abbreviation of the words “Terrestrial” (not hydromorphic, not submerged) and “Humipedon” (organic and organic-mineral humus horizons). With this application, it is possible to describe and classify terrestrial forest and grassland topsoils in a system published as a Special Issue entitled “Humusica 1– Terrestrial Natural Humipedons” in the journal Applied Soil Ecology. The iOS application TerrHum allows the storage of the main content of Humusica 1 on a cellular phone. Images, diagrams and simplified tables of classification may be recalled with a few touches on the screen. Humus forms, representing five humus systems, are classified based on the vertical arrangement of diagnostic horizons and their attributes. TerrHum allows accessing specific figures that are stored in a virtual cloud and can be downloaded the first time the user recalls them. Once all figures have been opened in the device, the application is ready to use, without any further internet connection. The application is in continuous evolution

    TerrHum: an iPhone app for classifying forest humipedons.

    Get PDF
    The knowledge of a little number of specific terms is necessary to investigate and describe the forest topsoils: diagnostic components, diagnostic organic and organic-mineral horizons and the 17 series of humus horizons composing all the observed real forest not submerged topsoils. Diagnostic horizons are grouped in humus forms, which represent five humus systems. To become a good topsoil investigator is then only a question of field experience. No mean to do otherwise: you must go in the field with a blade and a good manual and put your hand in the soil. You have to make a hole and to observe on your knee a wall of the pit, from the top to the bottom, detecting all the characters that you find indicated in the manual. At the beginning you will be discouraged, things change from a site to another and never are exactly as in the manual. After few days of difficult survey, you will be able to know your soil even without doing a hole. Be patient and follow what it is indicated in the published first eight articles of Humusica (http://intra.tesaf.unipd.it/people/zanella/hmanual.html). On the poster, you find some examples of diagnostic properties of forest topsoils, and a dichotomy key of classification, you can copy paste and take with you in the field. An iPhone application (Terrhum) allows to bring in the field the necessary information for a fast classification of the topsoil

    Expression of the Arabidopsis WRINKLED 1 transcription factor leads to higher accumulation of palmitate in soybean seed

    Get PDF
    Soybean (Glycine max [L.] Merr.) is a commodity crop highly valued for its protein and oil content. The high percentage of polyunsaturated fatty acids in soybean oil results in low oxidative stability, which is a key parameter for usage in baking, high temperature frying applications, and affects shelf life of packaged products containing soybean oil. Introduction of a seed-specific expression cassette carrying the Arabidopsis transcription factor WRINKLED1 (AtWRI1) into soybean, led to seed oil with levels of palmitate up to approximately 20%. Stacking of the AtWRI1 transgenic allele with a transgenic locus harbouring the mangosteen steroyl-ACP thioesterase (GmFatA) resulted in oil with total saturates up to 30%. The creation of a triple stack in soybean, wherein the AtWRI1 and GmFatA alleles were combined with a FAD2-1 silencing allele led to the synthesis of an oil with 28% saturates and approximately 60% oleate. Constructs were then assembled that carry a dual FAD2-1 silencing element/GmFatA expression cassette, alone or combined with an AtWRI1 cassette. These plasmids are designated pPTN1289 and pPTN1301, respectively. Transgenic events carrying the T-DNA of pPTN1289 displayed an oil with stearate levels between 18% and 25%, and oleate in the upper 60%, with reduced palmitate

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    A Standardized Morpho-Functional Classification of the Planet’s Humipedons

    Get PDF
    It was time to take stock. We modified the humipedon classification key published in 2018 to make it easier and more practical. This morpho-functional taxonomy of the topsoil (humipedon) was only available in English; we also translated it into French and Italian. A standardized morphofunctional classification of humipedons (roughly the top 30–40 cm of soil: organic and organomineral surface horizons) would allow for a better understanding of the functioning of the soil ecosystem. This paper provides the founding principles of the classification of humipedon into humus systems and forms. With the recognition of a few diagnostic horizons, all humus systems can be determined. The humus forms that make up these humus systems are revealed by measuring the thicknesses of the diagnostic horizons. In the final part of the article, several figures represent the screenshots of a mobile phone or tablet application that allows for a fast recall of the diagnostic elements of the classification in the field. The article attempts to promote a standardized classification of humipedons for a global and shared management of soil at planet level

    A standardized morpho-functional classification of the planet’s humipedons

    Get PDF
    It was time to take stock. We modified the humipedon classification key published in 2018 to make it easier and more practical. This morpho-functional taxonomy of the topsoil (humipedon) was only available in English; we also translated it into French and Italian. A standardized morphofunctional classification of humipedons (roughly the top 30–40 cm of soil: organic and organomineral surface horizons) would allow for a better understanding of the functioning of the soil ecosystem. This paper provides the founding principles of the classification of humipedon into humus systems and forms. With the recognition of a few diagnostic horizons, all humus systems can be determined. The humus forms that make up these humus systems are revealed by measuring the thicknesses of the diagnostic horizons. In the final part of the article, several figures represent the screenshots of a mobile phone or tablet application that allows for a fast recall of the diagnostic elements of the classification in the field. The article attempts to promote a standardized classification of humipedons for a global and shared management of soil at planet level

    Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses

    Get PDF
    1H NMR (nuclear magnetic resonance spectroscopy) has been used for metabolomic analysis of ‘Riesling’ and ‘Mueller-Thurgau’ white wines from the German Palatinate region. Diverse two-dimensional NMR techniques have been applied for the identification of metabolites, including phenolics. It is shown that sensory analysis correlates with NMR-based metabolic profiles of wine. 1H NMR data in combination with multivariate data analysis methods, like principal component analysis (PCA), partial least squares projections to latent structures (PLS), and bidirectional orthogonal projections to latent structures (O2PLS) analysis, were employed in an attempt to identify the metabolites responsible for the taste of wine, using a non-targeted approach. The high quality wines were characterized by elevated levels of compounds like proline, 2,3-butanediol, malate, quercetin, and catechin. Characterization of wine based on type and vintage was also done using orthogonal projections to latent structures (OPLS) analysis. ‘Riesling’ wines were characterized by higher levels of catechin, caftarate, valine, proline, malate, and citrate whereas compounds like quercetin, resveratrol, gallate, leucine, threonine, succinate, and lactate, were found discriminating for ‘Mueller-Thurgau’. The wines from 2006 vintage were dominated by leucine, phenylalanine, citrate, malate, and phenolics, while valine, proline, alanine, and succinate were predominantly present in the 2007 vintage. Based on these results, it can be postulated the NMR-based metabolomics offers an easy and comprehensive analysis of wine and in combination with multivariate data analyses can be used to investigate the source of the wines and to predict certain sensory aspects of wine

    Anthropogenic perturbation of the carbon fluxes from land to ocean

    Full text link
    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe
    • 

    corecore