394 research outputs found
Effect of Changing the Vocal Tract Shape on the Sound Production of the Recorder: An Experimental and Theoretical Study
Changing the vocal tract shape is one of the techniques which can be used by
the players of wind instruments to modify the quality of the sound. It has been
intensely studied in the case of reed instruments but has received only little
attention in the case of air-jet instruments. This paper presents a first study
focused on changes in the vocal tract shape in recorder playing techniques.
Measurements carried out with recorder players allow to identify techniques
involving changes of the mouth shape as well as consequences on the sound. A
second experiment performed in laboratory mimics the coupling with the vocal
tract on an artificial mouth. The phase of the transfer function between the
instrument and the mouth of the player is identified to be the relevant
parameter of the coupling. It is shown to have consequences on the spectral
content in terms of energy distribution among the even and odd harmonics, as
well as on the stability of the first two oscillating regimes. The results
gathered from the two experiments allow to develop a simplified model of sound
production including the effect of changing the vocal tract shape. It is based
on the modification of the jet instabilities due to the pulsating emerging jet.
Two kinds of instabilities, symmetric and anti-symmetric, with respect to the
stream axis, are controlled by the coupling with the vocal tract and the
acoustic oscillation within the pipe, respectively. The symmetry properties of
the flow are mapped on the temporal formulation of the source term, predicting
a change in the even / odd harmonics energy distribution. The predictions are
in qualitative agreement with the experimental observations
Irreversible Adsorption from Dilute Polymer Solutions
We study irreversible polymer adsorption from dilute solutions theoretically.
Universal features of the resultant non-equilibrium layers are predicted. Two
cases are considered, distinguished by the value of the local monomer-surface
sticking rate Q: chemisorption (very small Q) and physisorption (large Q).
Early stages of layer formation entail single chain adsorption. While single
chain physisorption times tau_ads are typically microsecs, for chemisorbing
chains of N units we find experimentally accessible times tau_ads = Q^{-1}
N^{3/5}, ranging from secs to hrs. We establish 3 chemisorption universality
classes, determined by a critical contact exponent: zipping, accelerated
zipping and homogeneous collapse. For dilute solutions, the mechanism is
accelerated zipping: zipping propagates outwards from the first attachment,
accelerated by occasional formation of large loops which nucleate further
zipping. This leads to a transient distribution omega(s) \sim s^{-7/5} of loop
lengths s up to a size s_max \approx (Q t)^{5/3} after time t. By tau_ads the
entire chain is adsorbed. The outcome of the single chain adsorption episode is
a monolayer of fully collapsed chains. Having only a few vacant sites to adsorb
onto, late arriving chains form a diffuse outer layer. In a simple picture we
find for both chemisorption and physisorption a final loop distribution
Omega(s) \sim s^{-11/5} and density profile c(z) \sim z^{-4/3} whose forms are
the same as for equilibrium layers. In contrast to equilibrium layers, however,
the statistical properties of a given chain depend on its adsorption time; the
outer layer contains many classes of chain, each characterized by different
fraction of adsorbed monomers f. Consistent with strong physisorption
experiments, we find the f values follow a distribution P(f) \sim f^{-4/5}.Comment: 18 pages, submitted to Eur. Phys. J. E, expanded discussion sectio
Field-effect transistors assembled from functionalized carbon nanotubes
We have fabricated field effect transistors from carbon nanotubes using a
novel selective placement scheme. We use carbon nanotubes that are covalently
bound to molecules containing hydroxamic acid functionality. The functionalized
nanotubes bind strongly to basic metal oxide surfaces, but not to silicon
dioxide. Upon annealing, the functionalization is removed, restoring the
electronic properties of the nanotubes. The devices we have fabricated show
excellent electrical characteristics.Comment: 5 pages, 6 figure
Emotion and ethics: an inter-(en)active approach
The original publication is available at www.springerlink.comIn this paper we start exploring the affective and ethical dimension of what De Jaegher and Di
Paolo (2007) have called ‘participatory sense-making’. In the first part, we distinguish
various ways in which we are, and feel, affectively inter-connected in interpersonal
encounters. In the second part, we discuss the ethical character of this affective interconnectedness,
as well as the implications that taking an ‘inter-(en)active approach’ has for
ethical theory itself
Sensory substitution information informs locomotor adjustments when walking through apertures
The study assessed the ability of the central nervous system (CNS) to use echoic information from sensory substitution devices (SSDs) to rotate the shoulders and safely pass through apertures of different width. Ten visually normal participants performed this task with full vision, or blindfolded using an SSD to obtain information regarding the width of an aperture created by two parallel panels. Two SSDs were tested. Participants passed through apertures of +0%, +18%, +35%, and +70% of measured body width. Kinematic indices recorded movement time, shoulder rotation, average walking velocity across the trial, peak walking velocities before crossing, after crossing and throughout a whole trial. Analyses showed participants used SSD information to regulate shoulder rotation, with greater rotation associated with narrower apertures. Rotations made using an SSD were greater compared to vision, movement times were longer, average walking velocity lower and peak velocities before crossing, after crossing and throughout the whole trial were smaller, suggesting greater caution. Collisions sometimes occurred using an SSD but not using vision, indicating that substituted information did not always result in accurate shoulder rotation judgements. No differences were found between the two SSDs. The data suggest that spatial information, provided by sensory substitution, allows the relative position of aperture panels to be internally represented, enabling the CNS to modify shoulder rotation according to aperture width. Increased buffer space indicated by greater rotations (up to approximately 35% for apertures of +18% of body width), suggests that spatial representations are not as accurate as offered by full vision
HIV-1 integrase variability and relationship with drug resistance in antiretroviral-naive and -experienced patients with different HIV-1 subtypes
Evaluation of the MOCAGE Chemistry Transport Model during the ICARTT/ITOP Experiment
We evaluate the Meteo-France global chemistry transport 3D model MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle) using the important set of aircraft measurements collected during the ICARRT/ITOP experiment. This experiment took place between US and Europe during summer 2004 (July 15-August 15). Four aircraft were involved in this experiment providing a wealth of chemical data in a large area including the North East of US and western Europe. The model outputs are compared to the following species of which concentration is measured by the aircraft: OH, H2O2, CO, NO, NO2, PAN, HNO3, isoprene, ethane, HCHO and O3. Moreover, to complete this evaluation at larger scale, we used also satellite data such as SCIAMACHY NO2 and MOPITT CO. Interestingly, the comprehensive dataset allowed us to evaluate separately the model representation of emissions, transport and chemical processes. Using a daily emission source of biomass burning, we obtain a very good agreement for CO while the evaluation of NO2 points out incertainties resulting from inaccurate ratio of emission factors of NOx/CO. Moreover, the chemical behavior of O3 is satisfactory as discussed in the paper
Tactual perception: a review of experimental variables and procedures
This paper reviews literature on tactual perception. Throughout this review we will highlight some of the most relevant variables in touch literature: interaction between touch and other senses; type of stimuli, from abstract stimuli such as vibrations, to two- and three-dimensional stimuli, also considering concrete stimuli such as the relation between familiar and unfamiliar stimuli or the haptic perception of faces; type of participants, separating studies with blind participants, studies with children and adults, and an analysis of sex differences in performance; and finally, type of tactile exploration, considering conditions of active and passive touch, the relevance of movement in touch and the relation between exploration and time. This review intends to present an organised overview of the main variables in touch experiments, attending to the main findings described in literature, to guide the design of future works on tactual perception and memory.This work was funded by the Portuguese “Foundation for Science and Technology” through PhD scholarship SFRH/BD/35918/2007
Rapid, room-temperature, solvent-free mechanochemical oxidation of elemental gold into organosoluble gold salts
Gold is highly valued for a wide range of commercial and technological applications but is processed exclusively through highly aggressive and toxic solvents and/or reagents, ultimately yielding water-soluble salts that are difficult to separate from inorganic reaction byproducts. As a result, development of safer, cleaner processes that would enable gold processing in non-aqueous, organic solvent is an attractive technological goal. Here, we describe a methodology that simultaneously avoids aggressive reagents and enables gold extraction into a safe organic solvent. The methodology is based on solventless, mechanochemical oxidation of metallic gold with Oxone® in the presence of tetraalkylammonium halide salts, to directly, rapidly (within 30–60 minutes) and at room temperature convert gold metal into solid salts that are immediately soluble in pure organic solvents and aqueous alcoholic media. The organosoluble gold salts are easily separated from sulfate byproducts by direct extraction into the benign solvent ethyl acetate, which is also easily recycled for re-use, providing a strategy for gold activation and dissolution without any additional reagents for purification, such as cation exchange resins, salts, or chelating agents. Besides enabling direct extraction of gold into an organic solvent, the mechanochemically obtained organosoluble gold salts can also be readily used for further syntheses, as shown here by a two-step one-pot route to prepare air- and moisture-resistant Au(i) salts, and an improved synthesis of gold nanoparticles from bulk gold
- …
