128 research outputs found
An accretionary origin for ordinary chondrite groups
Accepted versio
The record of human impact in the sedimentary record at Portus, the harbor of ancient Rome
International audienceThe present study focuses on the analysis of palaeo-pollutions and the sedimentary environments in which they were trapped in the Roman Portus harbor. Portus received heavy-metals pollution both from local foundries, fulling, and tanning and from distal upstream development in Rome. Rome wastewaters, which accounted for up to 3 percent of the total Tiber discharge, were forwarded to Portus through a network of canals (Canale Romano and Canale Trasverso) connecting the river to the sea. In this manner, harbor basins accumulated both allochthonous and autochthonous heavy metals. We determined major and trace element concentrations as well as Pb isotope compositions in a high-resolution set of samples from sediment cores recovered in the Portus area. Principal component analysis of elements that are less prone to the influence of human activities, such as Ca, Mg, Mn, Zr, K, Al, Ti, Na, Sr, and Mn, was used in conjunction with metallic elements to break down the sedimentary load into local and regional components. The record of Pb concentrations and isotopic compositions reveals an overall general trend on which other signatures are superimposed. The geochemical background of the Tiber catchment (24.7-26.2 ppm Pb and 206 Pb/ 207 Pb ~ 1.198) represents geologically young (model age Tm <50 Ma) Pb derived from natural runoff over young sediments and volcanics in the Latium. From the 1 st century AD to the end of the roman period, the harbor regime evolved from a dominant fluvial (enriched in Al, Ti, Mg, K, and Zr) to a more marine influence (high Ca/Mg, Na/Al, Sr, and CaCO3) in the upper part of the harbor unit. "Imperial" Pb (90.5-35.4 ppm Pb and 20
Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos
Decays of radionuclides throughout the Earth's interior produce geothermal
heat, but also are a source of antineutrinos. The (angle-integrated)
geoneutrino flux places an integral constraint on the terrestrial radionuclide
distribution. In this paper, we calculate the angular distribution of
geoneutrinos, which opens a window on the differential radionuclide
distribution. We develop the general formalism for the neutrino angular
distribution, and we present the inverse transformation which recovers the
terrestrial radioisotope distribution given a measurement of the neutrino
angular distribution. Thus, geoneutrinos not only allow a means to image the
Earth's interior, but offering a direct measure of the radioactive Earth, both
(1) revealing the Earth's inner structure as probed by radionuclides, and (2)
allowing for a complete determination of the radioactive heat generation as a
function of radius. We present the geoneutrino angular distribution for the
favored Earth model which has been used to calculate geoneutrino flux. In this
model the neutrino generation is dominated by decays in the Earth's mantle and
crust; this leads to a very ``peripheral'' angular distribution, in which 2/3
of the neutrinos come from angles > 60 degrees away from the downward vertical.
We note the possibility of that the Earth's core contains potassium; different
geophysical predictions lead to strongly varying, and hence distinguishable,
central intensities (< 30 degrees from the downward vertical). Other
uncertainties in the models, and prospects for observation of the geoneutrino
angular distribution, are briefly discussed. We conclude by urging the
development and construction of antineutrino experiments with angular
sensitivity. (Abstract abridged.)Comment: 25 pages, RevTeX, 7 figures. Comments welcom
Recommended from our members
The Geochemical Earth Reference Model (GERM)
The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals are clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California
The extreme physical properties of the CoRoT-7b super-Earth
International audience► Here, we discuss the extreme physical properties possible for the first characterized rocky super-Earth, CoRoT-7b ( = 1.58 , = 5.7 ). ► We make the working hypothesis that the planet is rocky with no volatiles in its atmosphere, and derive the physical properties that result. ► The dayside is very hot (2500 K at the sub-stellar point) while the nightside is very cold (∼ 50 K). The sub-stellar point is as hot as the tungsten filament of an incandescent bulb, resulting in the melting and distillation of silicate rocks and the formation of a lava ocean. ► These possible features of CoRoT-7b should be common to many small and hot planets, including Kepler-10b. They define a new class of objects that we propose to name ''Lava-ocean planets''
- …