10 research outputs found
Características biológicas das células-tronco mesenquimais Biological characteristics of mesenchymal stem cells
Células-tronco são células indiferenciadas. Como tal, apresentam uma série de características que as tornam candidatas à utilização terapêutica. As principais características das células-tronco são a capacidade de autorrenovação e de se diferenciarem em diversos tipos celulares. Desta forma, acredita-se que células-tronco presentes nos diferentes tecidos tenham papel regenerativo quando estes sofrem uma lesão ou injúria. Entre os tecidos conhecidos por apresentarem células-tronco após a vida pós-natal, a medula óssea foi a mais estudada, por muitos anos, como fonte tanto de células-tronco hematopoéticas quanto de células-tronco mesenquimais, também denominadas de células mesenquimais estromais da medula óssea ou células estromais mesenquimais multipotentes. Estas células são um grupo de células clonogênicas, presentes no estroma da medula óssea, que, quando submetidas a diferentes estímulos apropriados, são capazes de se diferenciarem em várias linhagens de células, como a osteogênica, a condrogênica e a adipogênica e, possivelmente, em outros tipos celulares não mesodérmicos, como células neurais ou hepatócitos. Nesta revisão, as principais características das células-tronco mesenquimais serão abordadas, incluindo os marcadores moleculares e de membrana, as características de divisão e de diferenciação, a heterogeneidade e as aplicações clínicas potenciais.Stem cells are undifferentiated cells. They show various characteristics that make them suitable for clinical applications. The main stem cell characteristics are their capacity of autorenewal and of differentiation into different cell lines so it is quite possible that stem cells in different tissues exhibit a regenerative role when these tissues are injured. Bone marrow is the best studied tissue as a source of hematopoietic stem cells as well as mesenchymal stem cells (also known as mesenchymal stromal cells or mesenchymal stromal multipotent cells); clonogenic cells in the bone marrow stroma. They are able to differentiate under specific stimuli in several cell lines including osteogenic, chondrogenic and adipogenic cells, and probably in other nonmesodermic cell lines such as neural cells or hepatocytes. Here the main characteristics of mesenchymal stem cells will be discussed, including the molecular and membrane markers, the division and differentiation properties, the heterogeneity, and the potential clinical applications
Biological characteristics of mesenchymal stem cells
Células-tronco são células indiferenciadas. Como tal, apresentam uma série de características que as tornam candidatas à utilização terapêutica. As principais características das células-tronco são a capacidade de autorrenovação e de se diferenciarem em diversos tipos celulares. Desta forma, acredita-se que células-tronco presentes nos diferentes tecidos tenham papel regenerativo quando estes sofrem uma lesão ou injúria. Entre os tecidos conhecidos por apresentarem células-tronco após a vida pós-natal, a medula óssea foi a mais estudada, por muitos anos, como fonte tanto de células-tronco hematopoéticas quanto de células-tronco mesenquimais, também denominadas de células mesenquimais estromais da medula óssea ou células estromais mesenquimais multipotentes. Estas células são um grupo de células clonogênicas, presentes no estroma da medula óssea, que, quando submetidas a diferentes estímulos apropriados, são capazes de se diferenciarem em várias linhagens de células, como a osteogênica, a condrogênica e a adipogênica e, possivelmente, em outros tipos celulares não mesodérmicos, como células neurais ou hepatócitos. Nesta revisão, as principais características das células-tronco mesenquimais serão abordadas, incluindo os marcadores moleculares e de membrana, as características de divisão e de diferenciação, a heterogeneidade e as aplicações clínicas potenciais.Stem cells are undifferentiated cells. They show various characteristics that make them suitable for clinical applications. The main stem cell characteristics are their capacity of autorenewal and of differentiation into different cell lines so it is quite possible that stem cells in different tissues exhibit a regenerative role when these tissues are injured. Bone marrow is the best studied tissue as a source of hematopoietic stem cells as well as mesenchymal stem cells (also known as mesenchymal stromal cells or mesenchymal stromal multipotent cells); clonogenic cells in the bone marrow stroma. They are able to differentiate under specific stimuli in several cell lines including osteogenic, chondrogenic and adipogenic cells, and probably in other nonmesodermic cell lines such as neural cells or hepatocytes. Here the main characteristics of mesenchymal stem cells will be discussed, including the molecular and membrane markers, the division and differentiation properties, the heterogeneity, and the potential clinical applications
Células-tronco do líquido amniótico Amniotic fluid stem cells
Desde o primeiro isolamento e cultivo de células-tronco embrionárias humanas, há mais de 10 anos, seu uso na pesquisa e terapia foi inibida por considerações éticas complexas e pelo risco de transformação maligna destas células indiferenciadas após transplante no paciente. As células-tronco adultas são eticamente aceitas e o risco de transformação maligna é muito baixo. Entretanto, seu potencial de diferenciação e sua capacidade proliferativa são limitados. Cerca de 6 anos atrás, a descoberta de célulastronco no líquido amniótico que expressavam Oct-4, um marcador específico de pluripotencialidade, com alta capacidade de proliferação e diferenciação, iniciou um novo campo promissor na área das células-tronco. Estas células têm potencial de se diferenciar em células dos três folhetos germinativos. Não formam tumores in vivo e não levantam os questionamentos éticos associados com as células-tronco embrionárias humanas. Futuras investigações revelarão se as células-tronco do líquido amniótico realmente irão representar um tipo intermediário com vantagens em relação tanto às células-tronco embrionárias quanto às adultas. Este artigo faz uma revisão acerca destes tópicos e das características biológicas das células-tronco do líquido amniótico.Since the first successful isolation and cultivation of human embryonic stem cells about 10 years ago, their use for research and therapy has been constrained by complex ethical considerations as well as by the risk of development of malignancies of undifferentiated embryonic stem cells after transplantation into the patient. Adult stem cells are ethically acceptable and the risk of tumor development is low. However, their differentiation potential and proliferative capacity are limited. About 6 years ago, the discovery of Oct-4 expressing amniotic fluid stem cells, a specific marker of pluripotency, with a high proliferative capacity, and multilineage differentiation potential, initiated a promising field of research. These cells, indeed, have the potential to differentiate into cells of all three embryonic germ layers. They do not form tumors in vivo and do not raise ethical concerns. Further investigation will reveal whether these cells really are an intermediate cell type with advantages over both embryonic and adult stem cells. This article reviews the biological characteristics of amniotic fluid stem cells
Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice
Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice
An Open Resource for Non-human Primate Optogenetics.
Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs
An Open Resource for Non-human Primate Optogenetics
Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.status: publishe
The B-Star Exoplanet Abundance Study: a co-moving 16–25 M Jup companion to the young binary system HIP 79098
9 pages, 6 figures, accepted for publication in A&AInternational audienceWide low-mass substellar companions are known to be very rare among low-mass stars, but appear to become increasingly common with increasing stellar mass. However, B-type stars, which are the most massive stars within ~150 pc of the Sun, have not yet been examined to the same extent as AFGKM-type stars in that regard. In order to address this issue, we launched the ongoing B-star Exoplanet Abundance Study (BEAST) to examine the frequency and properties of planets, brown dwarfs, and disks around B-type stars in the Scorpius-Centaurus (Sco-Cen) association; we also analyzed archival data of B-type stars in Sco-Cen. During this process, we identified a candidate substellar companion to the B9-type spectroscopic binary HIP 79098 AB, which we refer to as HIP 79098 (AB)b. The candidate had been previously reported in the literature, but was classified as a background contaminant on the basis of its peculiar colors. Here we demonstrate that the colors of HIP 79098 (AB)b are consistent with several recently discovered young and low-mass brown dwarfs, including other companions to stars in Sco-Cen. Furthermore, we show unambiguous common proper motion over a 15-year baseline, robustly identifying HIP 79098 (AB)b as a bona fide substellar circumbinary companion at a 345+/-6 AU projected separation to the B9-type stellar pair. With a model-dependent mass of 16-25 Mjup yielding a mass ratio of <1%, HIP 79098 (AB)b joins a growing number of substellar companions with planet-like mass ratios around massive stars. Our observations underline the importance of common proper motion analysis in the identification of physical companionship, and imply that additional companions could potentially remain hidden in the archives of purely photometric surveys