162 research outputs found

    Medium-modified average multiplicity and multiplicity fluctuations in jets

    Full text link
    The energy evolution of average multiplicities and multiplicity fluctuations in jets produced in heavy-ion collisions is investigated from a toy QCD-inspired model. In this model, we use modified splitting functions accounting for medium-enhanced radiation of gluons by a fast parton which propagates through the quark gluon plasma. The leading contribution of the standard production of soft hadrons is enhanced by a factor Ns\sqrt{N_s} while next-to-leading order (NLO) corrections are suppressed by 1/Ns1/\sqrt{N_s}, where the parameter Ns>1N_s>1 accounts for the induced-soft gluons in the medium. Our results for such global observables are cross-checked and compared with their limits in the vacuum.Comment: 8 pages and 4 figures. Version to be published in EPJ

    2D vs. 3D pain visualization: User preferences in a spinal cord injury cohort

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 Springer VerlagResearch on pain experienced after Spinal Cord Injury (SCI) has revealed that not only are there several types of pain present in the same individual with this kind of trauma, but also that people who suffer such an injury can describe the characteristics of the same type of pain in different ways. Making it possible, therefore, to more precisely describe pain experience could prove to be vital for an increased quality of life. Accordingly, fifteen individuals with pain after SCI were asked to describe their pain experience using a 3 Dimensional (3D) model of the human body that could be used as an aid in communicating their pain. The results of this study suggest that the consensus of the participants approved the ability of the 3D model to more accurately describe their pain, an encouraging outcome towards the use of 3D technology in support of post SCI pain rehabilitation

    Tomonaga-Luttinger parameters for quantum wires

    Full text link
    The low-energy properties of a homogeneous one-dimensional electron system are completely specified by two Tomonaga-Luttinger parameters KρK_{\rho} and vσv_{\sigma}. In this paper we discuss microscopic estimates of the values of these parameters in semiconductor quantum wires that exploit their relationship to thermodynamic properties. Motivated by the recognized similarity between correlations in the ground state of a one-dimensional electron liquid and correlations in a Wigner crystal, we evaluate these thermodynamic quantities in a self-consistent Hartree-Fock approximation. According to our calculations, the Hartree-Fock approximation ground state is a Wigner crystal at all electron densities and has antiferromagnetic order that gradually evolves from spin-density-wave to localized in character as the density is lowered. Our results for KρK_{\rho} are in good agreement with weak-coupling perturbative estimates KρpertK_{\rho}^{pert} at high densities, but deviate strongly at low densities, especially when the electron-electron interaction is screened at long distances. Kρpertn1/2K_{\rho}^{pert}\sim n^{1/2} vanishes at small carrier density nn whereas we conjecture that Kρ1/2K_{\rho}\to 1/2 when n0n\to 0, implying that KρK_{\rho} should pass through a minimum at an intermediate density. Observation of such a non-monotonic dependence on particle density would allow to measure the range of the microscopic interaction. In the spin sector we find that the spin velocity decreases with increasing interaction strength or decreasing nn. Strong correlation effects make it difficult to obtain fully consistent estimates of vσv_{\sigma} from Hartree-Fock calculations. We conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit n0n\to 0 where V0V_0 is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include

    AD51B in Familial Breast Cancer

    Get PDF
    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk
    corecore