162 research outputs found
Medium-modified average multiplicity and multiplicity fluctuations in jets
The energy evolution of average multiplicities and multiplicity fluctuations
in jets produced in heavy-ion collisions is investigated from a toy
QCD-inspired model. In this model, we use modified splitting functions
accounting for medium-enhanced radiation of gluons by a fast parton which
propagates through the quark gluon plasma. The leading contribution of the
standard production of soft hadrons is enhanced by a factor while
next-to-leading order (NLO) corrections are suppressed by , where
the parameter accounts for the induced-soft gluons in the medium. Our
results for such global observables are cross-checked and compared with their
limits in the vacuum.Comment: 8 pages and 4 figures. Version to be published in EPJ
Protective efficacy of high-titre measles vaccines administered from the age of five months : a community study in rural Senegal
Serologic status and measles attack rates among vaccinated and unvaccinated children in rural Senegal
2D vs. 3D pain visualization: User preferences in a spinal cord injury cohort
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 Springer VerlagResearch on pain experienced after Spinal Cord Injury (SCI) has revealed that not only are there several types of pain present in the same individual with this kind of trauma, but also that people who suffer such an injury can describe the characteristics of the same type of pain in different ways. Making it possible, therefore, to more precisely describe pain experience could prove to be vital for an increased quality of life. Accordingly, fifteen individuals with pain after SCI were asked to describe their pain experience using a 3 Dimensional (3D) model of the human body that could be used as an aid in communicating their pain. The results of this study suggest that the consensus of the participants approved the ability of the 3D model to more accurately describe their pain, an encouraging outcome towards the use of 3D technology in support of post SCI pain rehabilitation
No evidence of long-term immunosuppression after high-titer Edmonst(r)on-Zagreb measles vaccination in Senegal (sic)
Tomonaga-Luttinger parameters for quantum wires
The low-energy properties of a homogeneous one-dimensional electron system
are completely specified by two Tomonaga-Luttinger parameters and
. In this paper we discuss microscopic estimates of the values of
these parameters in semiconductor quantum wires that exploit their relationship
to thermodynamic properties. Motivated by the recognized similarity between
correlations in the ground state of a one-dimensional electron liquid and
correlations in a Wigner crystal, we evaluate these thermodynamic quantities in
a self-consistent Hartree-Fock approximation. According to our calculations,
the Hartree-Fock approximation ground state is a Wigner crystal at all electron
densities and has antiferromagnetic order that gradually evolves from
spin-density-wave to localized in character as the density is lowered. Our
results for are in good agreement with weak-coupling perturbative
estimates at high densities, but deviate strongly at low
densities, especially when the electron-electron interaction is screened at
long distances. vanishes at small carrier density
whereas we conjecture that when , implying that
should pass through a minimum at an intermediate density.
Observation of such a non-monotonic dependence on particle density would allow
to measure the range of the microscopic interaction. In the spin sector we find
that the spin velocity decreases with increasing interaction strength or
decreasing . Strong correlation effects make it difficult to obtain fully
consistent estimates of from Hartree-Fock calculations. We
conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit where
is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include
AD51B in Familial Breast Cancer
Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk
- …
