87 research outputs found
The Cryogenic System for the LHC Test String 2: Design, Commissioning and Operation
A 107-m long superconducting magnet string representing a full-cell of the LHC machine was designed for assembly and commissioning at CERN in order to validate the final design choices. This new facility, thereafter called Test String 2, and its cryogenic infrastructure cons ist of feed and return boxes coupled via transfer lines to a 6 kW @ 4.5 K refrigerator and to a low pressure pumping group, a separate cryogenic distribution line, an electrical feed box with HTS current leads, 2 quadrupole and 6 dipole prototype and pre-series superconducting magnets
Efficacy and safety of trabectedin in metastatic uterine leiomyosarcoma: A retrospective multicenter study of the Spanish ovarian cancer research group (GEICO)
Objective: We assessed trabectedin in patients with advanced uterine leiomyosarcoma (uLMS) in real-life clinical practice given according to the marketing authorization. Methods: Thirty-six women from 11 tertiary hospitals across Spain who received trabectedin after anthracycline-containing regimen/s were retrospectively analyzed. The primary endpoint was progression-free survival (PFS). Results: Median PFS and overall survival (OS) since starting trabectedin treatment were 5.4 (95%CI: 3.5–7.3) and 18.5 months (95%CI: 11.5–25.6), respectively. Median OS was significantly higher (P = 0.028) in patients receiving trabectedin in = 2nd line (25.3 months) than in = 3rd (15.1 months) and with ECOG performance status = 1 at trabectedin start (19.8 months) than ECOG 2–3 (6.0 months, P = 0.013). When calculating OS since diagnosis, patients had longer OS with localized disease at diagnosis (87.4 months) vs. locally advanced (30.0 months) or metastatic (44.0 months, P = 0.041); and patients who received adjuvant therapy (87.4 months) compared with those who did not (30.0 months, P = 0.003), especially when receiving radiochemotherapy (106.7 months, P = 0.027). One patient (2.8%) had a complete response (CR) and nine patients (25.0%) achieved a partial response (PR) for an objective response rate of 27.8% with median response duration of 11 months (range: 4–93). Eighteen patients (50.0%) had disease stabilization for a disease control rate (DCR) of 77.8%. More patients receiving trabectedin in 1st-line of advanced disease achieved CR (16.7%) and PR (50.0%) than those in = 2nd line/s (0.0% and 20.0%), whereas the DCR was similar across treatment lines. Reversible neutropenia was the most common grade 3/4 laboratory abnormality (19.4%). Conclusions: Trabectedin confers clinical benefit in patients with recurrent/metastatic uLMS, given after failure to an anthracycline-based regimen being comparable to those reported in clinical trials and with a manageable safety profile
The deep-sea hub of the ANTARES neutrino telescope
The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub
Efficacy and safety of trabectedin in metastatic uterine leiomyosarcoma: A retrospective multicenter study of the Spanish ovarian cancer research group (GEICO)
Objective: We assessed trabectedin in patients with advanced uterine leiomyosarcoma (uLMS) in real-life clinical
practice given according to the marketing authorization.
Methods: Thirty-six women from 11 tertiary hospitals across Spain who received trabectedin after anthracyclinecontaining regimen/s were retrospectively analyzed. The primary endpoint was progression-free survival (PFS).
Results: Median PFS and overall survival (OS) since starting trabectedin treatment were 5.4 (95%CI: 3.5–7.3)
and 18.5 months (95%CI: 11.5–25.6), respectively. Median OS was significantly higher (P = 0.028) in patients
receiving trabectedin in ≤ 2nd line (25.3 months) than in ≥ 3rd (15.1 months) and with ECOG performance
status ≤ 1 at trabectedin start (19.8 months) than ECOG 2–3 (6.0 months, P = 0.013). When calculating OS
since diagnosis, patients had longer OS with localized disease at diagnosis (87.4 months) vs. locally advanced
(30.0 months) or metastatic (44.0 months, P = 0.041); and patients who received adjuvant therapy
(87.4 months) compared with those who did not (30.0 months, P = 0.003), especially when receiving radiochemotherapy (106.7 months, P = 0.027). One patient (2.8%) had a complete response (CR) and nine patients
(25.0%) achieved a partial response (PR) for an objective response rate of 27.8% with median response duration
of 11 months (range: 4–93). Eighteen patients (50.0%) had disease stabilization for a disease control rate (DCR)
of 77.8%. More patients receiving trabectedin in 1st-line of advanced disease achieved CR (16.7%) and PR
(50.0%) than those in ≥ 2nd line/s (0.0% and 20.0%), whereas the DCR was similar across treatment lines.
Reversible neutropenia was the most common grade 3/4 laboratory abnormality (19.4%).
Conclusions: Trabectedin confers clinical benefit in patients with recurrent/metastatic uLMS, given after failure
to an anthracycline-based regimen being comparable to those reported in clinical trials and with a manageable
safety profile
Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope
The ANTARES collaboration has performed a series of {\em in situ}
measurements to study the background light for a planned undersea neutrino
telescope. Such background can be caused by K decays or by biological
activity. We report on measurements at two sites in the Mediterranean Sea at
depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were
used to measure single counting rates and coincidence rates for pairs of tubes
at various distances. The background rate is seen to consist of three
components: a constant rate due to K decays, a continuum rate that
varies on a time scale of several hours simultaneously over distances up to at
least 40~m, and random bursts a few seconds long that are only correlated in
time over distances of the order of a meter. A trigger requiring coincidences
between nearby photomultiplier tubes should reduce the trigger rate for a
neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle
Physic
First Results and Status of the LHC Test String 2
After the commissioning of String 2 Phase1 and the powering of the main circuits in autumn 2001, a short yet vigorous experimental program was carried-out to validate the final design choices for the technical systems of LHC. This program included the investigation of thermo-hydraulics of quenches quench propagation, power converter controls and tracking between power converters, as well as the measurement of currents induced in the beam screen after a quench and crossing the interconnects. Parameters significant for the LHC, such as heat loads, were also measured. During the winter shutdown the String was completed to a full cell with the addition of three pre-series dipoles (Phase 2). After a short description of the layout of Phase 1 and Phase 2, the results of the experiments are presented and the future experimental program is outlined
The Preparation of the Cryomagnets and the Assembly of the LHC Test String 2
The numerous complex activities required to prepare the cryomagnets for the installation in String 2 are described. These include the configuration of the mechanical interfaces, thee conditioning of the beam tubes, the installation of beam screens and the instrumentation as well as the final checks. The preparation of the cryomagnets for String 2 has been a dress rehearsal for the preparation that the cryomagnets will undergo before their installation in the tunnel. After a description of the interconnection procedures of the components for String 2, the tests carried-out to release the String for operation are described. A brief account of the lessons learnt is also given
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
Determination of essential biomarkers in lung cancer : a real-world data study in Spain with demographic, clinical, epidemiological and pathological characteristics
Background The survival of patients with lung cancer has substantially increased in the last decade by about 15%. This increase is, basically, due to targeted therapies available for advanced stages and the emergence of immunotherapy itself. This work aims to study the situation of biomarker testing in Spain. Patients and methods The Thoracic Tumours Registry (TTR) is an observational, prospective, registry-based study that included patients diagnosed with lung cancer and other thoracic tumours, from September 2016 to 2020. This TTR study was sponsored by the Spanish Lung Cancer Group (GECP) Foundation, an independent, scientific, multidisciplinary oncology society that coordinates more than 550 experts and 182 hospitals across the Spanish territory. Results Nine thousand two hundred thirty-nine patients diagnosed with stage IV non-small cell lung cancer (NSCLC) between 2106 and 2020 were analysed. 7,467 (80.8%) were non-squamous and 1,772 (19.2%) were squamous. Tumour marker testing was performed in 85.0% of patients with non-squamous tumours vs 56.3% in those with squamous tumours (p-value < 0.001). The global testing of EGFR, ALK, and ROS1 was 78.9, 64.7, 35.6% respectively, in non-squamous histology. PDL1 was determined globally in the same period (46.9%), although if we focus on the last 3 years it exceeds 85%. There has been a significant increase in the last few years of all determinations and there are even close to 10% of molecular determinations that do not yet have targeted drug approval but will have it in the near future. 4,115 cases had a positive result (44.5%) for either EGFR, ALK, KRAS, BRAF, ROS1, or high PDL1. Conclusions Despite the lack of a national project and standard protocol in Spain that regulates the determination of biomarkers, the situation is similar to other European countries. Given the growing number of different determinations and their high positivity, national strategies are urgently needed to implement next-generation sequencing (NGS) in an integrated and cost-effective way in lung cancer
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
- …