853 research outputs found

    CHARA/MIRC observations of two M supergiants in Perseus OB1: temperature, Bayesian modeling, and compressed sensing imaging

    Get PDF
    Two red supergiants of the Per OB1 association, RS Per and T Per, have been observed in H band using the MIRC instrument at the CHARA array. The data show clear evidence of departure from circular symmetry. We present here new techniques specially developed to analyze such cases, based on state-of-the-art statistical frameworks. The stellar surfaces are first modeled as limb-darkened discs based on SATLAS models that fit both MIRC interferometric data and publicly available spectrophotometric data. Bayesian model selection is then used to determine the most probable number of spots. The effective surface temperatures are also determined and give further support to the recently derived hotter temperature scales of red su- pergiants. The stellar surfaces are reconstructed by our model-independent imaging code SQUEEZE, making use of its novel regularizer based on Compressed Sensing theory. We find excellent agreement between the model-selection results and the reconstructions. Our results provide evidence for the presence of near-infrared spots representing about 3-5% of the stellar flux

    Mechanical equilibrium of hot, large‐scale magnetic loops on T Tauri stars

    Get PDF
    The most extended, closed magnetic loops inferred on T Tauri stars confine hot, X‐ray‐emitting plasma at distances from the stellar surface beyond the X‐ray‐bright corona and closed large‐scale field, distances comparable to the corotation radius. Mechanical equilibrium models have shown that dense condensations, or ‘slingshot prominences’, can rise to great heights due to their density and temperatures cooler than their environs. On T Tauri stars, however, we detect plasma at temperatures hotter than the ambient coronal temperature. By previous model results, these loops should not reach the inferred heights of tens of stellar radii where they likely no longer have the support of the external field against magnetic tension. In this work, we consider the effects of a stellar wind and show that indeed hot loops that are negatively buoyant can attain a mechanical equilibrium at heights above the typical extent of the closed corona and the corotation radius.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90589/1/j.1365-2966.2012.20434.x.pd

    Health-related quality of life in relation to shark symptomatic and radiographic definitions of knee osteoarthritis : data from Osteoarthritis Initiative (OAI) 4-year follow- up study

    Get PDF
    Background: The purpose was to quantify the decrement in health utility (referred as disutility) associated with knee osteoarthritis (OA) and different symptomatic and radiographic uni- and bilateral definitions of knee OA in a repeated measures design of persons with knee OA or at increased risk of developing knee OA. Methods: Data were obtained from the Osteoarthritis Initiative database. SF-12 health-related quality of life was converted into SF-6D utilities, and were then handled as the health utility loss by subtracting 1.000 from the utility score, yielding a negative value (disutility). Symptomatic OA was defined by radiographic findings (Kellgren-Lawrence, K-L, grade >= 2) and frequent knee pain in the same knee. Radiographic OA was defined by five different definitions (K-L >= 2 unilaterally / bilaterally, or the highest / mean / combination of K-L grades of both knees). Repeated measures generalized estimating equation (GEE) models were used to investigate disutility in relation to these different definitions. Results: Utility decreased with worsening of symptomatic or radiographic status of knee OA. The participants with bilateral and unilateral symptomatic knee OA had 0.03 (p <0.001) and 0.02 (p <0.001) points lower utility scores, respectively, compared with the reference group. The radiographic K-L grade 4 defined as the mean or the highest grade of both knees was related to a decrease of 0.04 (p <0.001) and 0.03 (p <0.001) points in utility scores, respectively, compared to the reference group. Conclusions: Knee OA is associated with diminished health-related quality of life. Health utility can be quantified in relation to both symptomatic and radiographic uni- and bilateral definitions of knee OA, and these definitions are associated with differing disutilities. The performance of symptomatic definition was better, indicating that pain experience is an important factor in knee OA related quality of life.Peer reviewe

    Confronting Standard Models of Proto--Planetary Disks With New Mid--Infrared Sizes from the Keck Interferometer

    Get PDF
    We present near and mid-infrared interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the IRTF of 11 well known young stellar objects, several observed for the first time in these spectral and spatial resolution regimes. With AU-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and mid-infrared disk emission. We find a high degree of correlation between the stellar luminosity and the mid-infrared disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used "star + inner dust rim + flared disk" class of models strongly fails to reproduce the SED and spatially-resolved mid-infrared data simultaneously; specifically a more compact source of mid-infrared emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the two-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modelling alone, although detailed silicate feature fitting by McClure et al. 2013 recently came to a similar conclusion. As has been suggested recently by Menu et al. 2015, the difficulty in predicting mid-infrared sizes from the SED alone might hint at "transition disk"-like gaps in the inner AU; however, the relatively high correlation found in our mid-infrared disk size vs. stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead

    X-raying the Beating Heart of a Newborn Star: Rotational Modulation of High-energy Radiation from V1647 Ori

    Get PDF
    We report a periodicity of ~1 day in the highly elevated X-ray emission from the protostar V1647 Ori during its two recent multiple-year outbursts of mass accretion. This periodicity is indicative of protostellar rotation at near-breakup speed. Modeling of the phased X-ray light curve indicates the high-temperature (~50 MK), X-ray-emitting plasma, which is most likely heated by accretion-induced magnetic reconnection, resides in dense (>~5e10 cm-3), pancake-shaped magnetic footprints where the accretion stream feeds the newborn star. The sustained X-ray periodicity of V1647 Ori demonstrates that such protostellar magnetospheric accretion configurations can be stable over timescales of years.Comment: 26 pages, 10 figure

    Detecting the Companions and Ellipsoidal Variations of RS CVn Primaries: I. sigma Geminorum

    Get PDF
    To measure the properties of both components of the RS CVn binary sigma Geminorum (sigma Gem), we directly detect the faint companion, measure the orbit, obtain model-independent masses and evolutionary histories, detect ellipsoidal variations of the primary caused by the gravity of the companion, and measure gravity darkening. We detect the companion with interferometric observations obtained with the Michigan InfraRed Combiner (MIRC) at Georgia State University's Center for High Angular Resolution Astronomy (CHARA) Array with a primary-to-secondary H-band flux ratio of 270+/-70. A radial velocity curve of the companion was obtained with spectra from the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5-m Tillinghast Reflector at Fred Lawrence Whipple Observatory (FLWO). We additionally use new observations from the Tennessee State University Automated Spectroscopic and Photometric Telescopes (AST and APT, respectively). From our orbit, we determine model-independent masses of the components (M_1 = 1.28 +/- 0.07 M_Sun, M_2 = 0.73 +/- 0.03 M_Sun), and estimate a system age of 5 -/+ 1 Gyr. An average of the 27-year APT light curve of sigma Gem folded over the orbital period (P = 19.6027 +/- 0.0005 days) reveals a quasi-sinusoidal signature, which has previously been attributed to active longitudes 180 deg apart on the surface of sigma Gem. With the component masses, diameters, and orbit, we find that the predicted light curve for ellipsoidal variations due to the primary star partially filling its Roche lobe potential matches well with the observed average light curve, offering a compelling alternative explanation to the active longitudes hypothesis. Measuring gravity darkening from the light curve gives beta < 0.1, a value slightly lower than that expected from recent theory.Comment: Accepted to ApJ, 11 pages, 6 figures, 8 table

    Sparse aperture masking interferometry survey of transitional discs: Search for substellar-mass companions and asymmetries in their parent discs

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.Context. Transitional discs are a class of circumstellar discs around young stars with extensive clearing of dusty material within their inner regions on 10s of au scales. One of the primary candidates for this kind of clearing is the formation of planet(s) within the disc that then accrete or clear their immediate area as they migrate through the disc. Aims. The goal of this survey was to search for asymmetries in the brightness distribution around a selection of transitional disc targets. We then aimed to determine whether these asymmetries trace dynamically-induced structures in the disc or the gap-opening planets themselves. Methods. Our sample included eight transitional discs. Using the Keck/NIRC2 instrument we utilised the Sparse Aperture Masking (SAM) interferometry technique to search for asymmetries indicative of ongoing planet formation. We searched for close-in companions using both model fitting and interferometric image reconstruction techniques. Using simulated data, we derived diagnostics that helped us to distinguish between point sources and extended asymmetric disc emission. In addition, we investigated the degeneracy between the contrast and separation that appear for marginally resolved companions. Results. We found FP Tau to contain a previously unseen disc wall, and DM Tau, LkHα330, and TW Hya to contain an asymmetric signal indicative of point source-like emission. We placed upper limits on the contrast of a companion in RXJ1842.9-3532 and V2246 Oph. We ruled the asymmetry signal in RXJ1615.3-3255 and V2062 Oph to be false positives. In the cases where our data indicated a potential companion we computed estimates for the value of McM˙ c and found values in the range of 10−5 − 10−3M2 J yr−1 . Conclusions. We found significant asymmetries in four targets. Of these, three were consistent with companions. We resolved a previously unseen gap in the disc of FP Tau extending inwards from approximately 10 au.We acknowledge support from a STFC Rutherford Fellowship and Grant (ST/J004030/1, ST/K003445/1), Marie Sklodowska-Curie CIG grant (Ref. 618910), and Philip Leverhulme Prize (PLP-2013-110). We additionally acknowledge support from NASA KPDA grants (JPL-1452321, 1474717, 1485953, 1496788). The authors wish to recognise and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundatio

    Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation

    Full text link
    In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs having well-measured masses against 12,050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10-80 minutes afterward, and we further require the flare and CME to occur within +/-45 degrees in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log(CME mass)~0.70*log(flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic
    corecore