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Abstract

This study aimed to explore the capability of potentially probiotic bifidobacteria

to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the

enzymes involved in this reaction. Bifidobacterium strains belonging to eight

species occurring in the human gut were screened. The hydrolysis seemed pecu-

liar of Bifidobacterium animalis, whereas the other species failed to release CA.

Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid

was detected only in B. animalis. In silico research among bifidobacteria ester-

ases identified Balat_0669 as the cytosolic enzyme likely responsible of CA

release in B. animalis. Comparative modeling of Balat_0669 and molecular

docking studies support its role in chlorogenic acid hydrolysis. Expression,

purification, and functional characterization of Balat_0669 in Escherichia coli

were obtained as further validation. A possible role of B. animalis in the activa-

tion of hydroxycinnamic acids was demonstrated and new perspectives were

opened in the development of new probiotics, specifically selected for the

enhanced bioconversion of phytochemicals into bioactive compounds.

Introduction

Edible plants provide the human with different non-nutri-

tional phytochemicals which can exert a beneficial role in

health. A major group of bioactive phytochemicals is repre-

sented by polyphenols, which include diverse classes of

compounds, such as phenolic acids, flavonoids, lignans,

and stilbenes (Manach et al. 2004). Among phenolic acids,

hydroxycinnamic acids (HCA) are a major group of

polyphenols exhibiting antioxidant, nitrite-scavenging, and

anti-carcinogenetic activities (El-Seedi et al. 2012). They

are distributed in plant tissues and occur abundantly in

many plant-derived foods and beverages (e.g., fruits, ber-

ries, seeds, cereals, leafy vegetables, coffee). HCA are rarely

found in free form and generally occur as oligomers or as

esters formed by condensation with hydroxyl acids, alco-

hols, and carbohydrates (Scalbert and Williamson 2000;

Manach et al. 2004; El-Seedi et al. 2012). Caffeic acid (CA)

is the most abundant HCA in berry, fruits, and coffee,

where it is present in remarkably high concentration. Thus,

it is one of the most abundant polyphenols in diet, the daily

intake of which may reach 1 g in coffee drinkers (El-Seedi

et al. 2012). CA is commonly ester bound to quinic acid

(QA), in the form of chlorogenic acid (3-O-caffeoyl-quinic

acid, C-QA). Likewise for other HCA, the beneficial effects

of C-QA and CA have been widely explored, confirming

their antioxidant and DNA–protective activities (Xu et al.

2012; Jang et al. 2014). Recent studies also demonstrated

the anti-diabetic effect of CA, the enhancement of vascular

health through a potent antihypertensive activity with low

toxic manifestations, the antiproliferative and cytotoxic

properties in a variety of cancer cell lines without display-
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ing significant toxicity toward healthy cells (Gomes et al.

2003; Mubarak et al. 2012; Ong et al. 2013; Bhullar et al.

2014; Oboh et al. 2014). Likewise other polyphenols affect-

ing the composition of the colonic microbiota, CA was also

demonstrated to inhibit harmful intestinal bacteria such as

opportunistic pathogens (Lou et al. 2011; Duda-Chodak

2012).

Like most HCA esters, the major part of C-QA is not

absorbed in the small intestine and reaches the colon

(Azuma et al. 2000; Stalmach et al. 2010). Here it

encounters the commensal microbiota, which is capable

to perform synergistic metabolic transformations affecting

its fate and the biological activity. Interindividual differ-

ences in excretion profiles of HCA metabolites have been

observed, indicating that the composition of the microbi-

ota may dictate the fate of dietary HCA, affecting their

bioavailability and activity (Olthof et al. 2003; Rechner

et al. 2004). Microbial metabolism of C-QA includes the

hydrolysis to QA and CA, making free CA available for

absorption. Besides, free CA may be further transformed

by colonic bacteria into a variety of bioactive metabolites,

such as m-coumaric acid and hydroxylated derivatives of

phenylpropionic and benzoic acids (Gonthier et al. 2003,

2006; Ogawa et al. 2011; Tom�as-Barber�an et al. 2014). A

more complex picture of C-QA fate has been recently

depicted, since the colonic microbiota can hydrogenate or

dehydroxylate C-QA before hydrolyzing the ester bond,

or even breaking the QA moiety (Tom�as-Barber�an et al.

2014). Bacterial biotransformation generally converge on

3-(3-hydroxyphenyl)-propanoic acid, even though the

order of the reactions may differ among subjects, result-

ing from differences in microbiota composition.

The colonic microbiota is composed largely of

anaerobic bacteria, with cell numbers exceeding 1011 per

gram of intestinal content. In adults, it is dominated by

bacteria belonging to the phyla Firmicutes, Bacteroidetes,

and Actinobacteria (Arumugam et al. 2011). Firmicutes are

by far the most abundant and assorted group and include

the Clostridia and Bacilli classes. Actinobacteria constitute

a sub-dominant proportion (up to 8%) of bacterial popu-

lation, mostly composed of bacteria belonging to the

genus Bifidobacterium (Arumugam et al. 2011). Bifidobac-

teria are one of the most important health-promoting

groups of the colonic microbiota and are used as probiot-

ics (Rossi and Amaretti 2010). They exert beneficial effects

through different mechanisms, such as immunostimula-

tion, anticarcinogenic activity, pathogen growth inhibi-

tion, vitamin and amino acid production, reduction of the

conversion of primary bile salts to secondary bile salts,

bioconversion of a number of dietary compounds into

bioactive healthy molecules (Rossi and Amaretti 2010).

This study investigated the role of bifidobacteria in

C-QA metabolism. Couteau et al. (2001) isolated six intes-

tinal strains capable of hydrolyzing HCA, among which a

sole Bifidobacterium isolate. To our knowledge, a compre-

hensive screening exploring the capability of bifidobacteria

to transform HCA has never been accomplished. We

wanted to fill this gap by investigating the capability of

these health-promoting bacteria to transform C-QA, and

characterizing the enzyme involved in the ester bound

hydrolysis.

Material and Methods

Chemicals, bacterial strains, and culture
conditions

All chemicals were purchased from Sigma-Aldrich (Stein-

heim, Germany) unless otherwise stated. Stock solutions of

75 mmol/L C-QA and CA acid were prepared dissolving

each substance in dimethyl sulfoxide. Thirty-two strains of

Bifidobacterium (Table 1), taken from our collection of

human isolates or obtained from ATCC American Type

Culture Collection, Manassas, VA, USA, were subcultured at

37°C in Lactobacillus MRS broth (BD Difco, Sparks, MD)

containing 0.5 g/L L-cysteine HCl (hereinafter called MRS)

in an anaerobic cabinet under a N2 85%, CO2 10%, H2 5%

atmosphere.

To evaluate the resistance of bifidobacteria to C-QA and

CA, 16 h MRS cultures were inoculated (10% v/v) into

5 mL of MRS containing 0, 0.5, 2, and 10 mmol/L C-QA or

CA. The cultures were incubated anaerobically for 24 h,

then the turbidity at 600 nm (OD600) was determined.

Strains were considered as inhibited if final OD600 was the

25% or less than in MRS control cultures. To evaluate C-

QA transformation, 16 h MRS cultures were inoculated

(10% v/v) into 5 mL of MRS containing 500 lmol/L C-

QA, and incubated at 37°C in anaerobiosis for 48 h. As

controls, 5 mL of culture without C-QA and 5 mL of non-

inoculated medium containing 500 lmol/L C-QA were car-

ried out. Bioreactor batch processes were performed with

Bifidobacterium animalis subsp. lactis WC 0432 in 500 mL

bioreactors (Sixfors V3.01; Infors, Bottmingen, Swiss), con-

taining 250 mL of MRS supplemented with 500 lmol/L C-

QA. The culture was kept at 37°C under gentle agitation;

anaerobic conditions were maintained by keeping the med-

ium under a stream of CO2; if necessary for the specific

experiment, a pH controller delivered 4 mol/L NaOH to

maintain the pH at 5.5. Samples were collected periodically

to monitor turbidity and C-QA hydrolysis.

Bioconversion of C-QA with supernatants,
resting cells, and cell extracts

Supernatants, resting cells, and cell extracts were prepared

from MRS cultures and were utilized for bioconversion
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experiments to investigate the location of C-QA hydrolase

activity. Culture samples were centrifuged (6000g for

10 min at 4°C), then the supernatant was filtered at

0.22 lm and used for C-QA bioconversion. The pellet

was washed twice and suspended with 50 mmol/L phos-

phate buffered saline (50 mmol/L, pH 6.5), then adjusted

to 3.0 units of OD600. The suspension was divided into

aliquots that were directly utilized as resting cells biocata-

lyst for C-QA bioconversion or were mechanically dis-

rupted. To prepare the extract, the cellular suspension

was given one stroke at 40.0 kPsi in One Shot Cell Dis-

rupter (Constant Systems), then it was centrifuged to

remove solids (13,000g for 15 min at 4°C) and filtered

through 0.22 lm filter. Supernatants, resting cells, and

cell-free extracts were incubated at 37°C for 24 h in pres-

ence of 500 lmol/L C-QA. In negative control reactions,

CQA was incubated with the buffer or with supernatants,

resting cells, or cell-free extracts that were inactivated at

100°C for 10 min. To examine in depth the enzyme loca-

tion in B. animalis subsp. lactis WC 0432, MRS batch cul-

tures (constant pH = 5.5) were sampled at 4, 20, 24, and

36 h. C-QA hydrolysis was assayed in the supernatants,

resting cells, and cell extracts from different growth

phases. To quantify the extent of cell lysis, fructose-6-

phosphate phosphoketolase (F-6-PPK) was assayed spec-

trophotometrically at 540 nm in both cell-free extracts

and dialyzed supernatants (Tannock 1999). Cell viability

was determined by means of a fluorescence-based assay

Table 1. Yield of C-QA hydrolysis after 24 h cultivation of bifidobacteria in presence of 0.5 mmol/L C-QA, and ability to grow in MRS supple-

mented with 0.5, 2, and 10 mmol/L CA or C-QA.

Strain

Yield1 C-QA ? CA
Growth with CA (mmol/L) Growth with C-QA (mmol/L)

% 0.5 2 10 0.5 2 10

B. animalis subsp. animalis ATCC 27536 28 � 1 + + + + + +

B. animalis subsp. animalis WC 0409 28 � 3 + + + + + +

B. animalis subsp. animalis WC 0410 28 � 2 + + + + + +

B. animalis subsp. animalis WC 0411 7 � 1 + + � + + +

B. animalis subsp. lactis WC 0412 17 � 1 + + � + + +

B. animalis subsp. lactis WC 0413 41 � 3 + + + + + +

B. animalis subsp. lactis WC 0414 34 � 3 + + + + + +

B. animalis subsp. lactis WC 0432 50 � 2 + + + + + +

B. animalis subsp. lactis WC 0471 27 � 2 + + + + + +

B. bifidum WC 0415 0 + + � + + +

B. bifidum WC 0417 0 + + � + + +/�
B. bifidum WC 0418 0 + + � + + +

B. breve WC 0420 0 + + � + + +

B. breve WC 0421 0 + + � + + +

B. breve WC 0422 0 + + � + + +

B. breve WC 0423 0 + + � + + +

B. breve WC 0424 0 + + � + + +

B. breve WC 0473 0 + + +/� + + +

B. catenulatum ATCC 27539 0 + + + + + +

B. catenulatum WC 0458 0 + + � + + +

B. catenulatum WC 0467 0 + � � + + �
B. longum subsp. infantis ATCC 15697 0 + + + + + +

B. longum subsp. infantis WC 0433 0 + + � + + �
B. longum subsp. infantis WC 0434 0 + + � + + �
B. longum subsp. longum WC 0436 0 + + � + � �
B. longum subsp. longum WC 0438 0 + + � + + �
B. longum subsp. longum WC 0439 0 + + � + + +

B. longum subsp. longum WC 0440 0 + + � + + +

B. longum subsp. longum WC 0443 5 � 2 + + � + + +

B. pseudocatenulatum WC 0400 0 + + � + + �
B. pseudocatenulatum WC 0401 0 + + � + + +

B. pseudocatenulatum WC 0402 0 + � � + + �
B. pseudocatenulatum WC 0403 0 + + � + + +

B. pseudocatenulatum WC 0407 0 + � � + + �
B. pseudocatenulatum WC 0408 0 + � � + + �
1Data are means � SD of three separate experiments.
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kit for microscopy (Live/Dead BacLight; Life Techno-

logies, Thermo Fisher Scientific, Waltham, MA, USA).

In silico search of Bifidobacterium esterases

The sequence of cinnamoyl esterase Lj0536 from Lactobacil-

lus johnsonii (Lai et al. 2011) was utilized as tblastn query

in the search for homologs in the sequenced genomes of

B. animalis (accession numbers CP001213.1, CP001515.1,

CP001606.1, CP001853.1, CP001892.1, CP002567.1, CP00

2915.1, CP003039.2, CP003497.1, CP003498.1, CP003

941.1, and CP004053.1) (Altschul et al. 1990).

The genes annotated as “esterase” in the genome of

B. animalis subsp. lactis DSM 10140 (CP001606.1) were

translated and used as tblastn queries to search the

homologous within the nucleotide sequences of B. bifi-

dum, B. breve, B. catenulatum, B. longum subsp. longum,

and B. longum subsp. infantis, and B. pseudocatenulatum,

including the genomes of B. bifidum (NC_017999.1,

NC_014638.1, and NC_014616.1), B. breve (CP006711.1,

CP006715.1, CP002743.1, CP006712.1, and CP006713.1),

B. longum (NC_004307.2 and NC_010816.1), and B. lon-

gum subsp. infantis (NC_015052.1 and NC_011593.1).

Signal P 4.0 and Secretome P 2.0 servers were used to

predict the presence of signal peptides driving secretion

and protein location (Bendtsen et al. 2005; Petersen et al.

2011).

Homology modeling and molecular docking

The sequence alignments were performed with Protein

Blast against the Protein Data Bank (PDB) with default

parameters as set in the web interface (Altschul et al.

1990; Berman et al. 2000). The query sequence of

Balat_0669 was obtained from the NCBI protein database

(NCBI reference sequence: YP_002969671.1). Alignments

were repeated for confirmation with ClustalW2 (Larkin

et al. 2007; Goujon et al. 2010).

The homology modeling of Balat_0669 was performed

with Modeller 9.11 (�Sali and Blundell 1993). The cinna-

moyl esterase and p-nitrobenzyl esterase X-ray crystal

structures were downloaded from the PDB (PDB ID:

3PF8 and 1QE3). For each protein, 500 models were

built, DOPE score was calculated and used to rank the

generated models. The last five C-terminal residues of

Balat_0669 could not be modeled because the corre-

sponding residues in Lj0536 were missing in the 3PF8

crystal structure. This region is about 24 �A from the

esterase active site, hence the deletion of such a limited of

residues is assumed to have no effect on substrate bind-

ing. The refinement of the homology model was per-

formed with Amber modules (Case et al. 2008). AM1-

BCC atomic partial charges were calculated for the ligands

with Antechamber and the minimization was performed

with Sander (Goujon et al. 2010). The parameters were

set as follows: a distance-dependent dielectric constant, a

12 �A cutoff for nonbonded interactions, and 500 steps of

conjugate gradient energy minimization.

The structure of Balat_0669 homology model was pre-

pared by adding hydrogen atoms with Amber’s module

Leap (Case et al. 2008). Gasteiger partial atomic charges

were added to the protein with MGLTools AutoDock

Tools 1.5.6 (Sanner 1999; Morris et al. 2009). The initial

conformations of the ligands were generated with the

program LigPrep (version 2.5; Schr€odinger, LLC, New

York, NY, 2011). Gasteiger charges were assigned to the

ligands with MGLTools 1.5.6. Docking was performed

with Autodock 4.2.3 (Morris et al. 2009) and parameters

were set as follows: 50 runs of genetic algorithm,

2.500.000 maximum energy evaluations, 150 individuals

in a population, and a root mean squared deviation

(RMSD) tolerance of 2 �A (Jain 2008). Grids were

centered on the binding site identified by CA in 3S2Z for

Balat_0669. The grid dimensions were 47 9 40 9 40 grid

points, with a spacing of 0.375 �A. Refinement of docking

complexes was performed via energy minimization with

Sander (Case et al. 2008), with parameters identical to

those used to refine the homology model (Rastelli 2013).

Primers design and cloning of Balat_0669

Genomic DNA of B. animalis subsp. lactis WC 0432 was

used as template after purification using the kit DNA Blood

& Tissue (Qiagen, Hilden, Germany), following the manu-

facturer protocol for Gram-positive bacteria. The primer

pair 0669-F (50-CCATATGACGACGAGCACAC-30) and

0669-R (50-AAGCTTCACGCCACCTCATG-30) was

designed according to the gene sequence of the homolog of

Balat_0669 in B. animalis subsp. lactis DSM 10140, to

obtain the whole amplification of the open reading frame

(orf). The restriction sites NdeI and HindIII were intro-

duced in the forward and in the reverse primer, respec-

tively. In order to be easily purified from Escherichia coli,

the recombinant protein Balat_0669 was also cloned and

expressed fused to the C-terminal 6 9 His tag carried in

the expression vector pET-21b(+). The primers 0669-F and

0669-R2 (50- CTC GAG CGC CAC CTC ATG ATG-30),
were used to amplify the Balat_0669 gene without the stop

codon, introducing the restriction sites NdeI and XhoI,

respectively.

The PCR products (789 bp and 796) were cloned into

the vector pTZ57R using the InsTAclone PCR cloning kit

(Thermo Fisher Scientific, Waltham, MA). E. coli DH5a
was transformed with the ligation mixtures using the

TransformAid Bacterial Transformation Kit (Thermo

Fisher Scientific). The genes were excised from the recom-
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binant plasmid pTZ-669 and pTZ-669His with NdeI-Hin-

dIII and NdeI-XhoI digestion, respectively. The fragments

were ligated into the expression vector pET-21b(+),
resulting in the recombinant plasmids pET-669 and pET-

669His.

Functional expression of the esterase
Balat_0669 in E. coli

The expression was assessed on E. coli BL21 (DE3) har-

boring pET-699. The culture was incubated at 30°C until

OD600 = 1.0, then protein expression was induced with

1 mmol/L isopropyl-b-D-1-thiogalactopyranoside (IPTG)

for 0.5, 1, 3, 5, 8, and 24 h at 30°C. Whole cells proteins

were separated with sodium dodecyl sulphate polyacryl-

amide gel electrophoresis (SDS-PAGE) using the buffer

system of Laemmli (1970) and 10% acrylamide gels. Gel

images were acquired by the GS800 calibrated densitome-

ter (Bio-Rad) and analyzed by the image analysis software

“Quantity One” (Bio-Rad, Redmond, WA, USA).

Gene function was confirmed performing E. coli resting

cell biotransformations. 0.1 L of Luria Bertani broth con-

taining ampicillin 100 g/L (LB-Amp) were inoculated with

an overnight culture in order to obtain an OD600 = 0.2. The

culture was incubated at 30°C (180 rpm) until an

OD600 = 1, then protein expression was induced with

1 mmol/L IPTG for 5 h. The cells were washed three times

with PBS pH 6.5 and resuspended to a final OD600 = 2.0.

Ten milliliters of resting cells were supplemented with

1 mmol/L C-QA and incubated at 30°C (180 rpm) for 24 h,

monitoring C-QA conversion and CA production after 1, 2,

4, 8, 16, and 24 h. As control, a parallel biotransformation

was performed with the biomass of E. coli BL21 (DE3) har-

boring the empty vector pET-21b.

Purification and enzymatic assay of the
esterase Balat_0669-(His)6

The 6 9 His tagged protein was obtained from E. coli

BL21 (DE3) harboring pET-699His. The strain was inocu-

lated in 1 L of LB-Amp and grown at 30°C until

OD600 = 1.0. The expression was induced with 1 mmol/L

IPTG, and the culture was incubated at 25°C for 16 h.

The biomass was collected by centrifugation and resus-

pended (200 g/L) in binding buffer (20 mmol/L sodium

phosphate, 500 mmol/L NaCl, 20 mmol/L imidazole, pH

7.4) containing a protease inhibitor cocktail (P8465;

Sigma-Aldrich). Cells were lysed by sonication in ice (15

burst of 30 sec followed by intervals of 30 sec for cooling)

and debrides were removed by 15 min centrifugation at

50000g and 4°C. Clear supernatant was applied onto a

AKTA Prime Plus system, equipped with three HisTrap

FF Crude 5 mL columns (GE Healthcare, Buckingham-

shire, UK) serially combined. The stationary phase was

initially washed with 50 mL of binding buffer (3 mL/

min) and the release of unbounded proteins was moni-

tored measuring the absorbance at 280 nm in the eluate.

Bounded proteins were eluted by a gradient of 20–500
mmol/L imidazole, the fractions containing recombinant

proteins were pooled, and dialyzed against 20 mmol/L

Tris-HCl buffer containing 0.1 mol/L NaCl, pH 6.5.

Protein purification was monitored by SDS-PAGE and

protein yield was measured by spectrophotometric quan-

tification using the Bradford assay (500-0006; Bio-Rad).

The esterase activity of the purified Balat0669-(His)6,

was assayed at 30°C, in 20 mmol/L Tris-HCl pH6.5, con-

taining 1 mmol/L C-QA The reaction was monitored by

HPLC analysis. The activity was expressed as micromoles

of C-QA hydrolyzed per minute per milligram of enzyme.

Analysis of C-QA and CA

C-QA and CA were analyzed by HPLC, with a device

(HPLC 1100; Agilent Technologies, Waldbronn, Germany)

equipped with a ZORBAX Eclipse XDB-C18 (Agilent) col-

umn and ultraviolet-visible diode array detector. A vol-

ume of 10 lL of sample was injected. Elution was

performed at room temperature with 0.7 mL/min of a

mixture of 0.1% (v/v) acetic acid in water (phase A) and

0.1% (v/v) acetic acid in acetonitrile, (phase B). The fol-

lowing gradient of phase B was applied: 0–6 min, linear

from 10% to 15%; 6–14 min, linear to 100%; 14–21 min,

isocratic on 100%; 21–24 min, linear to 10%; 24–30 min,

isocratic on 10%. The analytes C-QA and CA were identi-

fied at 280 nm and were quantified by external standard

method. Linearity was demonstrated from 25 to

1000 lmol/L (R2 > 0.995). The limits of detection (LOD)

of C-QA and CA were 0.30 and 0.35 lmol/L, respectively.

LOD was calculated as 3·(Sy/x)/b, where Sy/x represents

the residual SD and b is the slope of the linear calibration.

Statistical analysis

All values are means of three separate experiments. Differ-

ences in means were analyzed using analysis of variance

(ANOVA), followed by Tukey post hoc comparisons

(SPSS version 20; IBM, Armonk, NY). Differences were

considered statistically significant for P < 0.05.

Results

Resistance to C-QA and CA

Thirty-two strains belonging to eight Bifidobacterium species

occurring in the human gut were screened for their ability

to grow in the presence of different concentrations of C-QA
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or CA (Table 1). All the strains grew abundantly with both

500 lmol/L C-QA or CA, without significant differences in

final turbidity, compared with MRS (P > 0.05, data not

shown). Bifidobacteria grew generally well also in presence

of 2 mmol/L C-QA or CA, with few exceptions within B.

catenulatum/B. pseudocatenulatum group and B. longum

species. A greater number of strains belonging to B. longum

and B. catenulatum/B. pseudocatenulatum became uncapable

of growth in presence of 10 mmol/L C-QA, while B. animal-

is, B. bifidum, and B. breve remained uninhibited . The

majority of the strains were inhibited by 10 mmol/L CA,

with exceptions mostly belonging to B. animalis subsp. lactis

and B. animalis subsp. animalis.

Hydrolysis of C-QA by bifidobacteria

The ability of bifidobacteria to hydrolyze C-QA into CA

and QA was investigated. C-QA hydrolysis did not occur

in control noninoculated media. All the strains grew well

in C-QA-supplemented medium and gave biomass yields

similar (P > 0.05) to the ones obtained in control MRS

cultures (data not shown).

Only 10 out of 32 strains hydrolyzed C-QA and

released CA. Among these, all the 9 strains of B. animalis

subsp. animalis and B. animalis subsp. lactis (7 to 50%

CA) were present along with the strain B. longum subsp.

infantis WC0443 (5% CA) as the sole representative of

the other species. The most effective strain was B. animal-

is subsp. lactis WC 0432, which accomplished a 50%

hydrolysis. All the strains of B. bifidum, B. breve, B. cate-

nulatum, B. pseudocatenulatum, and most of B. longum

were incapable to transform C-QA at any extent. CA and

residual C-QA always accounted for more than 98% of

initial C-QA, while metabolites originating from reductive

reactions were never found.

C-QA biotransformation experiments were carried out

also with the supernatants and the cell-free extracts

obtained from stationary MRS cultures. Both the cell-free

extracts and the supernatants prepared from the strains

that were able to hydrolyze C-QA during growth were

active as well. On the contrary, the cell-free extracts and

the supernatants prepared from strains other than B. ani-

malis and B. longum subsp. infantis WC 0443 were always

inactive in C-QA hydrolysis.

C-QA hydrolysis by B. animalis subsp. lactis
WC 0432

To investigate the kinetics of C-QA hydrolysis by B. ani-

malis subsp. lactis WC 0432, the strain performing the

highest conversion, bioreactor batch cultures were per-

formed. The strain was cultured in MRS broth containing

500 lmol/L C-QA with or without pH control. In the

absence of control, the pH gradually decreased to 4.5 due

to the accumulation of lactic and acetic acids, and growth

ended after 30 h, yielding an OD600 of 4.6. C-QA hydro-

lysis accompanied the growth and reached a yield of 40%

(Fig. 1A). Higher biomass production and C-QA hydroly-

sis (P < 0.05) were both achieved if pH was prevented

from decreasing below 5.5 (Fig. 1B). In this condition,

the culture grew up to OD600 = 6.2, while up to 88.6%

C-QA was hydrolyzed, mostly during the growth phase

(68.2% in the first 24 h).

The location of the enzyme responsible for C-QA hydro-

lysis in B. animalis subsp. lactis WC 0432 was investigated

through biotransformation experiments. 500 lmol/L C-

QA were incubated for 24 h in presence of cell-free

extracts, resting cells, and supernatants that were prepared

from MRS cultures (constant pH = 5.5) at exponential,

decelerating, early stationary, and late stationary phases

(i.e., after 4, 20, 24, and 48 h of growth, respectively). All

the cell-free extracts effectively hydrolyzed C-QA, yielding

similar conversions of 87 � 4 to 91 � 4%, regardless of

the growth phase (P > 0.05). On the contrary, all the rest-

ing cells performed the hydrolysis at a lower extent, giving

conversions of 6 � 3 to 11 � 2% regardless of the growth

phase (P > 0.05). Supernatants performed C-QA hydrolysis

with increasing efficiency (P < 0.05), resulting in 7, 21, 39,

and 67% of conversion (SD always <4%) at exponential,

decelerating, early stationary, and late stationary phases,

(A) (B)

Figure 1. Time-course of C-QA hydrolysis in batch cultures of Bifidobacterium animalis subsp. lactis WC 0432 with the pH left uncontrolled (A)

or prevented to decrease below 5.5 (B). The strain was cultured in MRS broth supplemented with 500 lmol/L C-QA. Symbols: ●, turbidity, ○,
C-QA hydrolysis (%), dashed line, pH. Data are means of three separate experiments, bars represent SD, for pH, SD always <0.1.
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respectively. Supernatants were inactivated if pH was cor-

rected to 4.5.

To determine whether the hydrolytic activity of super-

natants could have originated from secretion or from cell

lysis, an intracellular enzyme involved in sugar metabo-

lism, F-6-PPK, was quantified in cell-free extracts and

supernatants. Increasing F-6-PPK activity was found in

supernatants throughout the growth, indicating the

release of cytoplasmic enzymes: at the decelerating phase,

F-6-PPK and C-QA esterase activities presented intracellu-

lar/extracellular ratios of 9.3 and 13.5, respectively. Con-

sistently, fluorescence-based cell viability assay confirmed

that, during the process, the percentage of damaged bac-

teria increased from 5% at the exponential phase to 23%

at the late stationary phase.

In silico search of Bifidobacterium esterases

All the sequenced genomes from both B. animalis subsp.

lactis and B. animalis subsp. animalis bear a homologue

of Lj0536, a cinnamoyl esterase from L. johnsonii able to

hydrolyze C-QA (query coverage = 90%; identity = 42%).

The sequences retrieved from the genomes of B. animalis

are identical and, likewise Lj0536, do not present any

homologue in other Bifidobacterium species. In B. animal-

is subsp. lactis DSM 10140 the homologue of Lj0536 is

Balat_0669 and is annotated as “esterase.” The genome of

this strain presents nine other sequences annotated as

“esterase”: Balat_0183, Balat_0519, Balat_0593, Ba-

lat_0859, Balat_0899, Balat_1050, Balat_1264, Balat_1547,

Balat_1604. The search for their homologues within each

of the species that were unable to hydrolyze C-QA (B.

bifidum, B. breve, B. longum subsp. longum, and B. longum

subsp. infantis, and B. catenulatum and B. pseudocatenula-

tum) was fruitful, yielding putative homologues in at least

three other species (Table S1).

Balat_0669 lacks any signal peptide for Sec or TAT

secretion pathways and is likely intracellular, based on

Secretome P 2.0 and Signal P 4.0 predictions.

Homology models and docking analysis

Having hypothesized Balat_0669 being an esterase able to

catalyze the hydrolysis of C-QA into CA and QA, it was

evaluated whether the substrate binds the active site and

makes interactions compatible with catalysis. Since the

X-ray crystal structure of Balat_0669 has not been solved,

the Lactobacillus johnsonii cinnamoyl esterase Lj0536

(Lj0536) (PDB ID: 3PF8) was identified in the Protein

Data Bank as the top scoring homolog and as a reason-

able template for homology modeling. It was also

reported that the esterase 3FP8 catalyzes the hydrolysis of

C-QA (Lai et al. 2011). The alignment between the two

sequences resulted in 42% identity with a 95% query cov-

erage (Fig. 2). The Lj0536 catalytic triad formed by

Ser106, His225, and Asp197 corresponded to residues

Ser116, His227, and Asp209 of Balat_0669. Furthermore,

the serine esterase conserved motif (Gly-X-Ser-X-Gly)

formed by Gly104-His105-Ser106-Gln107-Gly108 of

Lj0536 was correctly aligned with Gly114-His115-

Ser116-Gln117-Gly118 of Balat_0669 (Fig. 2). Five hun-

dred models of the protein were built, among which a

final representative with high score and high query/tem-

plate similarity of active site residue conformations was

chosen. The PDB also contains the crystal structure of the

inactive S106A mutant of Lj0536 in complex with CA

(PDB ID: 3S2Z) (Lai et al. 2011). This structure was used

to refine the model since it contains a bound ligand and

it provides a suitable active site architecture for docking

studies. Structural refinement of the selected Balat_0669

model was carried out with energy minimization after

superimposing Balat_0669 and 3S2Z structures, and man-

ually placing CA taken from the superimposed 3S2Z

structure into the Balat_0669 structure. Two water mole-

cules (waters 1149 and 1240 in 3S2Z) that form a net-

work of hydrogen bonds between the protein and the

ligand were included in the model. Energy minimization

of the residues in a range of 4 �A from the ligand was car-

ried out.

Figure 2. Sequence alignment between Balat

0669 and Lj0536. The alignment of the

catalytic triad and serine protease motif is

highlighted in green. The N-term and C-term

residues excluded from the homology model

building are highlighted in red.
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As a validation of the docking procedure, CA was ini-

tially redocked in the Balat_0669 refined model. The ori-

entation of CA was strikingly similar to that observed in

the 3S2Z crystal structure, with a RMSD of only 0.4 �A,

therefore the docking method as well as the Balat_0669

structure resulted appropriate for our purposes. C-QA

was docked using the same parameters and the resulting

complex was refined through energy minimization. The

CA moiety of C-QA binds the protein very similarly to

CA of 3S2Z, as shown in Figure 3A. Remarkably, the ester

bond of C-QA is at a short distance and almost perpen-

dicular to the Ser116 oxygen, and therefore is ideally

positioned to undergo catalysis, confirming that the pre-

dicted binding mode is consistent with the expected

hydrolysis mechanism. In addition, the QA moiety forms

additional favorable interactions with Balat_0669: its two

hydroxyls make hydrogen bonds with the backbone car-

bonyl of Phe41, and the carboxylate establishes a strong

salt bridge with Lys238. The free energy of binding esti-

mated by AutoDock is �8.8 Kcal/mol.

Dihydrochlorogenic acid (DHPP-QA) was suggested to

be hydrolyzed to dihydrocaffeic acid (DHPPA) by esterase

activity (Tom�as-Barber�an et al. 2014) and, thus, it may be

another putative substrate for Balat_0669. To assess its

ability to bind the esterase, this molecule has been docked

with the same parameters used for C-QA. The resulting

complex displayed a binding mode comparable to the one

predicted for Balat_0669/C-QA, as shown in Figure 3B.

The hydrogen bond network between the ligand and the

binding site residues was conserved and the ester bond

was again positioned favorably for catalysis. The estimated

free energy of binding for this complex was �9.8 Kcal/

mol, that is, close to the one observed for C-QA.

In conclusion, the binding modes predicted by Auto-

Dock for C-QA and DHPP-QA in complex with

Balat_0669 are consistent with a putative hydrolytic ester-

ase activity, the ester bond being in close contact with the

catalytic triad and a number of favorable electrostatic and

hydrophobic interactions being formed.

Expression of Balat _0669 in E. coli and
functional characterization

In order to determine the suitability of E. coli BL21

(DE3) for cloning and expressing Balat_0669, the absence

of homologous genes on its genome was ascertained. Fur-

thermore, the expression host, harboring the empty vector

pET-21b(+), was incapable to perform any C-QA trans-

formation (data not shown). A primer pair designed on

the Balat_0669 coding sequence of B. animalis subsp. lac-

tis DSM 10140 was used to clone the orf of B. animalis

subsp. lactis WC 0432. The coding sequence from B. ani-

malis subsp. lactis WC 0432 consisted of 789 bp, and was

identical to that of B. animalis subsp. lactis DSM 10140.

E. coli BL21 was transformed with the expression vector

pET-669, bearing the gene for Balat_0669. SDS-PAGE

revealed that expression occurred at high level in IPTG-

induced recombinant cells, reaching the highest value 5 h

after the induction, when recombinant Balat_0669

accounted for the 37% of E. coli proteins (Fig. 4). Resting

cells of induced E. coli expressing Balat_0669 were incu-

bated with C-QA 1 mmol/L and its concentration was

checked hourly via HPLC analysis. Conversion of C-QA

into CA was 91% after 1 h, and was complete after 2 h of

incubation.

Balat_0669 was also tagged at the C terminus with a

(His)6 sequence, expressed in E. coli BL21 (DE3) and

purified by immobilized metal affinity chromatography

(IMAC). From 1 L of LB culture approximately 100 mg

of protein were purified close to homogeneity as ascer-

(A) (B)

Figure 3. Refined docking complexes. (A) Docking orientation of C-QA (cyan) in the binding site of Balat_0669. X-ray crystallographic orientation

of CA (orange) as in 3S2Z structure of Lj0536 is also shown for a comparison. (B) Superposition of the docking orientations of C-QA (cyan) and

DHPP-QA (purple) in Balat_0669.
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tained by SDS-PAGE electrophoresis (Fig. 5). The C-QA

esterase activity was evaluated by incubating the recombi-

nant protein with 1 mmol/L C-QA, monitoring substrate

conversion, and CA release. The specific activity in the

purified fraction was 2.5 U/mg, approximately four times

higher than in the crude lysate (0.47 U/mg).

Discussion

Biotransformation of plant precursors in health-promot-

ing molecules has recently been claimed as a mechanism

involved in the positive-health effects of bifidobacteria.

The production of a cinnamoyl esterase capable of releas-

ing CA was suggested by previous investigations: a Bifido-

bacterium lactis strain produced a cell-bound cinnamoyl

esterase active against C-QA and ethyl ferulic acid (Cou-

teau et al. 2001), and a B. bifidum strain was able to uti-

lize feruloyl oligosaccharides as carbon sources removing

feruloyl groups (Yuan et al. 2007). Therefore, a possible

role of bifidobacteria in the release of caffeic and ferulic

acids in the colon should be considered as a possible

health effect, and the production of hydroxycinnamoyl-

esterases by bifidobacteria deserves a deeper investigation.

This study aimed to explore the role of bifidobacteria in

C-QA hydrolysis and CA release, and to recognize the

enzymes involved in this reaction.

Although a wide range of health-promoting activities of

dietary HCA has been described, their effect on the mod-

ulation of the gut ecology has been poorly investigated

(Etxeberria et al. 2013). As far as C-QA and CA are con-

cerned, it is known that CA exerts inhibitory activity

against certain pathogenic bacteria, with MIC values that

may be quite low (e.g., 0.056 mmol/L against Streptococ-

cus pneumoniae and Shigella dysenteriae) (Lou et al.

2011). Then, it is possible that these phytochemicals con-

tribute to modulation of colonic microbiota inhibiting in

a different manner the diverse microbial groups. The vast

majority of bifidobacteria, including those that do not

participate in C-QA hydrolysis, were resistant to 2 mmol/

L C-QA. This concentration approximates the highest

that may occur in the colon, considering 1 g/day C-QA

dietary uptake, 30% absorption in the small intestine, and

1 kg of colonic content. Furthermore, it should be con-

sidered that C-QA reaching intact the colon is promptly

transformed by the gut microbiota and its concentration

rapidly decreases (Selma et al. 2009). As a whole, bifido-

bacteria are not negatively affected by physiological

amounts of C-QA or CA. However, some opportunistic

pathogens may be affected by polyphenols (Lou et al.

2011; Duda-Chodak 2012), indicating that inhibition of

harmful microbial groups may be another mechanism

responsible of the positive-health effects of these phyto-

chemicals.

The screening carried out in order to determine the

capability of different Bifidobacterium species of human

origin to hydrolyze C-QA revealed that all the strains

belonging to both the B. animalis subspecies (B. animalis

subsp. animalis and B. animalis subsp. lactis) performed

this transformation, in agreement with previous data

(Couteau et al. 2001). Bifidobacteria belonging to the spe-
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Figure 4. Expression of the esterase Balat_0669 in Escherichia coli

BL21 (DE3) holding pET-669 vector. (A) SDS-PAGE analysis of whole

cells proteins (10% acrylamide in Laemmli buffer system, approx.

40 lg per lane): lane 1, prestained protein molecular weight marker

(SM0441, Fermentas); lanes 2 to 7, samples after 0.5, 1, 3, 5, 8, 24 h

of isopropyl-b-D-1-thiogalactopyranoside (IPTG) induction; lane 8,

uninduced control; lane 9, E. coli BL21 (DE3) holding pET21b empty

vector. (B) Time-course of C-QA hydrolysis by resting cells of E. coli

expressing the esterase Balat_0669. Values are means, n = 3, SD

always <4%.
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Figure 5. Purification of the esterase Balat_0669-(His)6 expressed in

Escherichia coli BL21 (DE3) holding pET-669His vector. (A) SDS-PAGE

analysis: lane 1, prestained protein molecular weight marker (161-

0374; Bio-Rad); lane 2, crude lysate; lane 3, cell-free extract; lane 4,

unbound fractions; lane 5, pooled purified fractions.
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cies B. bifidum, B. breve, B. catenulatum, B. pseudocatenul-

atum, and to the subspecies B. longum subsp. infantis and

B. longum subsp. longum failed to perform this transfor-

mation, with a sole exception (B. longum subsp. longum

WC 0443). To determine whether the inability of most of

the tested species to hydrolyze C-QA could be ascribed to

the absence of an esterase able to hydrolyze this substrate,

or to the lack of membrane transporters involved in mak-

ing the substrate available to cytosolic enzymes, a set of

transformations carried out with supernatants or cell-free

extracts obtained from early stationary cultures was per-

formed. As a result, the strains unable to hydrolyze C-QA

did not show detectable enzyme activity.

The available genome sequences of bifidobacteria were

analyzed to identify the genetic determinants that make

B. animalis able to hydrolyze C-QA. Among all the

sequences annotated as esterases in bifidobacteria ge-

nomes, only Balat_0669 is peculiar of B. animalis, being

absent in the species unable to hydrolyze C-QA. Due to

its high similarity, Balat_0669 is also the only bifidobacte-

ria esterase that could be considered a homolog of

Lj0536, a cinnamoyl esterase from L. johnsonii able to

hydrolyze C-QA, and was then hypothesized to be

responsible for the same reaction in B. animalis. Balat

_0669 does not bear a signal sequence for Sec or TAT

secretion pathways, in agreement with the evidence that

B. animalis subsp. lactis WC 0432 harbors an intracellular

C-QA-esterase.

For the first time, the structure of Balat_0669 has

been predicted through comparative modeling and the

binding of C-QA has been investigated with molecular

docking. Analysis of the resulting C-QA–esterase com-

plexes showed that C-QA binds the active site with

favorable electrostatic and hydrophobic interactions and

places the ester bond in a position prone to catalysis

by the catalytic serine. Cloning and expressing the

homolog of Balat _0669 from B. animalis subsp. lactis

WC 0432 in E. coli confirmed that it is an enzyme

capable of converting C-QA.

In a previous study, B. animalis subsp. lactis WC 0432,

was added to colonic microbiota cultures supplemented

with 1.5 mmol/L C-QA in order to improve the flux

toward CA (Tom�as-Barber�an et al. 2014). Compared with

control microbiota cultures, the presence of B. animalis

subsp. lactis WC 0432 did not foster the release of CA,

because C-QA hydrogenation yielding DHPP-QA pro-

ceeded faster than ester hydrolysis. Nonetheless, it is plau-

sible that B. animalis subsp. lactis WC 0432 hydrolyzed

DHPP-QA and accelerated the release of DHPPA, because

a greater accumulation of DHPPA occurred in presence

of the probiotic strain. Docking of DHPP-QA into the

Balat_0669 structure displayed a binding mode compara-

ble to the one predicted for Balat_0669/C-QA. Thus, it is

conceivable that Balat_0669 esterase of B. animalis subsp.

lactis WC 0432 did not contribute to C-QA hydrolysis

due to the competition by other reactions, including

reduction to DHPP-QA, while it may have played a role

in DHPPA release. In addition to the direct activity of

probiotics on dietary phytochemicals, their activity on

metabolites coming from microbiota metabolism is worth

investigating.

The strategy exploited in the present study highlights

the necessity to associate genomic data to a functional

approach in the study of colonic microbiota activities.

In fact, the analysis of genome sequences for predict-

able metabolic reactions cannot be sufficient for esti-

mating whether Bifidobacterium strains or other colonic

bacteria can transform dietary molecules or xenobiotics.

The combined approach used in this investigation can

be taken as a model for a deep insight into the study

of the function of colonic bacteria, and especially of

probiotics.

Conflict of Interest

None declared.

References

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J.

Lipman. 1990. Basic local alignment search tool. J. Mol.

Biol. 215:403–410.

Arumugam, M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada,

D. R. Mende, et al. 2011. Enterotypes of the human gut

microbiome. Nature 473:174–180.

Azuma, K., K. Ippoushi, M. Nakayama, H. Ito, H. Higashio,

and J. Terao. 2000. Absorption of chlorogenic acid and

caffeic acid in rats after oral administration. J. Agric. Food

Chem. 48:5496–5500.

Bendtsen, J. D., L. Kiemer, A. Fausbøll, and S. Brunak. 2005.

Non-classical protein secretion in bacteria. BMCMicrobiol.

5:58.

Berman, H. M., T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E.

Bourne, K. Burkhardt, et al. 2000. The protein data bank.

Nucleic Acids Res. 28:235–242.

Bhullar, K. S., G. Lassalle-Claux, M. Touaibia, and H. P.

Rupasinghe. 2014. Antihypertensive effect of caffeic acid and

its analogs through dual renin-angiotensin-aldosterone

system inhibition. Eur. J. Pharmacol. 730:125–132.

Case, D. A., T. A. Darden, T. E. Cheatham, C. L. Simmerling,

J. Wang, and R. E. Duke. 2008. AMBER 10. University of

California, San Francisco, CA.

Couteau, D., A. L. McCartney, G. R. Gibson, G. Williamson,

and C. B. Faulds. 2001. Isolation and characterization of

human colonic bacteria able to hydrolyse chlorogenic acid.

J. Appl. Microbiol. 90:873–881.

50 ª 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

Bifidobacteria and Chlorogenic Acid S. Raimondi et al.



Duda-Chodak, A. 2012. The inhibitory effect of polyphenols

on human gut microbiota. J. Physiol. Pharmacol. 63:497–

503.

El-Seedi, H. R., A. M. El-Said, S. A. Khalifa, U. G€oransson, L.

Bohlin, A. K. Borg-Karlson, et al. 2012. Biosynthesis, natural

sources, dietary intake, pharmacokinetic properties, and

biological activities of hydroxycinnamic acids. J. Agric. Food

Chem. 60:10877–10895.

Etxeberria, U., A. Fern�andez-Quintela, F. I. Milagro, L.

Aguirre, J. A. Mart�ınez, and M. P. Portillo. 2013. Impact of

polyphenols and polyphenol-rich dietary sources on gut

microbiota composition. J. Agric. Food Chem. 61:9517–

9533.

Gomes, C. A., T. G. da Cruz, J. L. Andrade, N. Milhazes, F.

Borges, and M. P. Marques. 2003. Anticancer activity of

phenolic acids of natural or synthetic origin: a

structure-activity study. J. Med. Chem. 46:5395–5401.

Gonthier, M. P., M. A. Verny, C. Besson, C. R�em�esy, and A.

Scalbert. 2003. Chlorogenic acid bioavailability largely

depends on its metabolism by the gut microflora in rats.

J. Nutr. 133:1853–1859.

Gonthier, M. P., C. Remesy, A. Scalbert, V. Cheynier, J. M.

Souquet, K. Poutanen, et al. 2006. Microbial metabolism of

caffeic acid and its esters chlorogenic and caftaric acids by

human faecal microbiota in vitro. Biomed. Pharmacother.

60:536–540.

Goujon, M., H. McWilliam, W. Li, F. Valentin, S. Squizzato,

J. Paern, et al. 2010. A new bioinformatics analysis tools

framework at EMBL-EBI. Nucleic Acids Res. 38(Suppl):

W695–W699.

Jain, A. 2008. Bias reporting, and sharing: computational

evaluations of docking methods. J. Comput. Aided Mol.

Des. 22:201–212.

Jang, H., H. R. Ahn, H. Jo, K. A. Kim, E. H. Lee, K. W. Lee,

et al. 2014. Chlorogenic acid and coffee prevent

hypoxia-induced retinal degeneration. J. Agric. Food Chem.

62:182–191.

Laemmli, U. K. 1970. Cleavage of structural proteins during

the assembly of the head of bacteriophage T4. Nature

227:680–685.

Lai, K. K., P. J. Stogios, C. Vu, X. Xu, H. Cui, S. Molloy, et al.

2011. An inserted a/b subdomain shapes the catalytic pocket

of Lactobacillus johnsonii cinnamoyl esterase. PLoS One 6:

e23269.

Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A.

McGettigan, H. McWilliam, et al. 2007. ClustalW and

ClustalX version 2. Bioinformatics 23:2947–2948.

Lou, Z., H. Wang, S. Zhu, C. Ma, and Z. Wang. 2011.

Antibacterial activity and mechanism of action of

chlorogenic acid. J. Food Sci. 76:M398–M403.

Manach, C., A. Scalbert, C. Morand, C. R�em�esy, and L.

Jim�enez. 2004. Polyphenols: food sources and bioavailability.

Am. J. Clin. Nutr. 79:727–747.

Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K.

Belew, D. S. Goodsell, et al. 2009. Autodock4 and

AutoDockTools4: automated docking with selective receptor

flexiblity. J. Comput. Chem. 16:2785–2791.

Mubarak, A., C. P. Bondonno, A. H. Liu, M. J. Considine, L.

Rich, E. Mas, et al. 2012. Acute effects of chlorogenic acid

on nitric oxide status, endothelial function, and blood

pressure in healthy volunteers: a randomized trial. J. Agric.

Food Chem. 60:9130–9136.

Oboh, G., O. M. Agunloye, S. A. Adefegha, A. J.

Akinyemi, and A. O. Ademiluyi. 2014. Caffeic and

chlorogenic acids inhibit key enzymes linked to type 2

diabetes (in vitro): a comparative study. J. Basic Clin.

Physiol. Pharmacol. Epub ahead of print. doi: 10.1515/

jbcpp-2013-0141

Ogawa, M., Y. Suzuki, Y. Endo, T. Kawamoto, and F. Kayama.

2011. Influence of coffee intake on urinary hippuric acid

concentration. Ind. Health 49:195–202.

Olthof, M. R., P. C. Hollman, M. N. Buijsman, J. M. van

Amelsvoort, and M. B. Katan. 2003. Chlorogenic acid,

quercetin-3-rutinoside and black tea phenols are extensively

metabolized in humans. J. Nutr. 133:1806–1814.

Ong, K. W., A. Hsu, and B. K. Tan. 2013. Anti-diabetic

and anti-lipidemic effects of chlorogenic acid are

mediated by ampk activation. Biochem. Pharmacol.

85:1341–1351.

Petersen, T. N., S. Brunak, G. von Heijne, and H. Nielsen.

2011. SignalP 4.0: discriminating signal peptides from

transmembrane regions. Nat. Methods 8:785–786.

Rastelli, G. 2013. Emerging topics in structure-based virtual

screening. Pharm. Res. 30:1458–1463.

Rechner, A. R., M. A. Smith, G. Kuhnle, G. R. Gibson,

E. S. Debnam, S. K. Srai, et al. 2004. Colonic

metabolism of dietary polyphenols: influence of

structure on microbial fermentation products. Free

Radic. Biol. Med. 36:212–225.

Rossi, M., and A. Amaretti. 2010. Probiotic properties of

bifidobacteria. Pp. 97–123 in D. van Sinderen and B. Mayo,

eds. Bifidobacteria: genomics and molecular aspects. Caister

Academic Press, Norfolk, U.K.
�Sali, A., and T. L. Blundell. 1993. Comparative protein

modelling by satisfaction of spatial restraints. J. Mol. Biol.

234:779–815.

Sanner, M. F. 1999. Python: a programming language for

software integration and development. J. Mol. Graph.

Model. 17:57–61.

Scalbert, A., and G. Williamson. 2000. Dietary intake and

bioavailability of polyphenols. J. Nutr. 130:2073S–2085S.

Selma, M. V., J. C. Esp�ın, and F. A. Tom�as-Barber�an. 2009.

Interaction between phenolics and gut microbiota: role in

human health. J. Agric. Food Chem. 57:6485–6501.

Stalmach, A., H. Steiling, G. Williamson, and A. Crozier. 2010.

Bioavailability of chlorogenic acids following acute ingestion

ª 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd. 51

S. Raimondi et al. Bifidobacteria and Chlorogenic Acid



of coffee by humans with an ileostomy. Arch. Biochem.

Biophys. 501:98–105.

Tannock, G. W. 1999. Identification of lactobacilli and

bifidobacteria. Curr. Issues Mol. Biol. 1:53–64.

Tom�as-Barber�an, F., R. Garcia-Villalba, A. Quartieri, S.

Raimondi, A. Amaretti, A. Leonardi, et al. 2014. In vitro

transformation of chlorogenic acid by human gut

microbiota. Mol. Nutr. Food Res. 58:1122–1131.

Xu, J. G., Q. P. Hu, and Y. Liu. 2012. Antioxidant and

DNA-protective activities of chlorogenic acid isomers.

J. Agric. Food Chem. 60:11625–11630.

Yuan, J. P., J. H.Wang, and X. Liu. 2007.Metabolism of dietary soy

isoflavones to equol by human intestinal microflora-implications

for health.Mol. Nutr. Food Res. 51:765–781.

Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Table S1. Results of the search, by tblastn analysis, for

homologs of the 10 annotated esterases of B. animalis

subsp. lactis DSM 10140, in all other Bifidobacterium spe-

cies that were unable to hydrolyze C-QA (B. bifidum,

B. breve, B. longum subsp. longum, and B. longum subsp.

infantis, and B. catenulatum, and B. pseudocatenulatum).
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