44 research outputs found

    Phase Change Materials in Glazing: Implications on Light Distribution and Visual Comfort. Preliminary Results

    Get PDF
    The visual comfort concerned with a technology with PCM embedded into a double glazing unit was analyzed, using the Daylight Probability Glare and the ‘Useful Illuminance’ (percent of workplane with an illuminance in the range 100-3000 lx). A sample office room was modeled using Radiance, under a clear sky and with the façade facing south. The visible transmittance of PCM was measured in laboratory and used as input in Radiance. The simulations were carried out for the two solstices and the Autumn equinox (four hours per day), for three sites (Östersund, 63.2°N; Turin, 45.2°N; Abu Dhabi, 24.4°N), considering the solid state of the PCM only

    Thermal and optical analysis of a passive heat recovery and storage system for greenhouse skin

    Get PDF
    The thermal performance of a greenhouse can be greatly affected by the thermal and optical properties of its envelope system. In this study, a novel skin for greenhouse consisting of ethene-co-tetrafluoroethene (ETFE) membrane and Phase Change Material (PCM) RT28 has been developed and has also been experimentally investigated. The optical behaviour of the developed ETFE-Phase Change Material module sample is measured using a spectrometer and a pyranometer, respectively. The results show that at liquid state, the module has higher transmittance than that of at solid state. In addition, the light transmittance is related to the PCM's temperature. In the thermal aspect, the ETFE-Phase Change Material module presents different characterisation under various irradiances. Comparative analysis is also conducted for the ETFE-Phase Change Material, ETFE-water and ETFE alone. The ETFE-Phase Change Material system shows a benefit of the thermal management than that of other systems

    The Mu3e experiment: Toward the construction of an HV-MAPS vertex detector

    Get PDF
    The Mu3e experiment searches for the lepton flavor violating decay ÎŒ+ → e+ e+ e−\mu^+~\rightarrow~e^+~e^+~e^- with an ultimate aimed sensitivity of 1 event in 101610^{16} decays. This goal can only be achieved by reducing the material budget per tracking layer to X/X0≈0.1%X/X_0 \approx 0.1 \%. High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) which are thinned to 50 ÎŒm serve as sensors. Gaseous helium is chosen as coolant. Results of recent studies related to the sensor prototypes, the helium cooling, and module prototyping are presented. The recent chip submission MuPix10 has proven its functionality regarding efficiency and time resolution. The helium cooling system for the inner tracker could be verified using a full-scale prototype. A complete prototype equipped with MuPix10 chips will be tested inside the Mu3e magnet in summer 2021

    Upgrading the beam telescopes at the DESY II Test Beam Facility

    Get PDF
    The DESY II Test Beam Facility is a key infrastructure for modern high energy physics detector development, providing particles with a small momentum spread in a range from 1 to 6 GeV to user groups e.g. from the LHC experiments and Belle II as well as generic detector R&D. Beam telescopes are provided in all three test beam areas as precise tracking reference without time stamping, with triggered readout and a readout time of >115 Ό\mus . If the highest available rates are used, multiple particles are traversing the telescopes within one readout frame, thus creating ambiguities that cannot be resolved without additional timing layers. Several upgrades are currently investigated and tested: Firstly, a fast monolithic pixel sensor, the TelePix, to provide precise track timing and triggering on a region of interest is proposed to overcome this limitation. The TelePix is a 180 nm HV-CMOS sensor that has been developed jointly by DESY, KIT and the University of Heidelberg and designed at KIT. In this publication, the performance evaluation is presented: The difference between two amplifier designs is evaluated. A high hit detection efficiency of above 99.9 % combined with a time resolution of below 4 ns at negligible pixel noise rates is determined. Finally, the digital hit output to provide region of interest triggering is evaluated and shows a short absolute delay with respect to a traditional trigger scintillator as well as an excellent time resolution. Secondly, a fast LGAD plane has been proposed to provide a time resolution of a few 10 ps, which is foreseen to drastically improve the timing performance of the telescope. Time resolutions of below 70 ps have been determined in collaboration with the University of California, Santa Barbara

    The Mu3e experiment: Toward the construction of an HV-MAPS vertex detector

    Get PDF
    The Mu3e experiment searches for the lepton flavor violating decay ÎŒ+ → e+ e+ e−\mu^+~\rightarrow~e^+~e^+~e^- with an ultimate aimed sensitivity of 1 event in 101610^{16} decays. This goal can only be achieved by reducing the material budget per tracking layer to X/X0≈0.1%X/X_0 \approx 0.1 \%. High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) which are thinned to 50 Όm50\ \mu m serve as sensors. Gaseous helium is chosen as coolant. Results of recent studies related to the sensor prototypes, the helium cooling, and module prototyping are presented. The recent chip submission MuPix10 has proven its functionality regarding efficiency and time resolution. The helium cooling system for the inner tracker could be verified using a full-scale prototype. A complete prototype equipped with MuPix10 chips will be tested inside the Mu3e magnet in summer 2021.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS2021), 15-18 March 2021. C21-03-15.

    Optical characterization of phase change materials for daylighting

    No full text
    In dieser Arbeit wurde untersucht, inwieweit sich durch den Einsatz von LatentwĂ€rmespeichermaterialien (kurz PCM = phase change material) Tageslichtelemente realisieren lassen, welche einen Teil der eingestrahlten Solarenergie zwischenspeichern und zeitverzögert wĂ€hrend der Abend- und Nachtstunden wieder an den Innenraum abgeben. Hierdurch lassen sich mehrere Effekte erzielen: Der bei Verglasungen auftretende starke WĂ€rmeeintrag wĂ€hrend des Tages wird gedĂ€mpft und bis in die Abend- und Nachtstunden ausgedehnt. Im Sommer fĂŒhrt dies zu geringeren KĂŒhllasten. Die zeitlich verzögerten abends auftretenden WĂ€rmeeintrĂ€ge können bei Bedarf ĂŒber NachtlĂŒftung abgefĂŒhrt werden. Im Winter sind die solaren Gewinne zeitlich besser mit den WĂ€rmeverlusten korreliert was ihren Nutzungsgrad erhöht. Dies fĂŒhrt zu geringerem Heizenergiebedarf. Weiter wird im Winter aufgrund der Erhöhung der SystemoberflĂ€chentemperatur durch den Phasenwechsel des PCM die thermische Behaglichkeit in den Abendstunden vor allem in SystemnĂ€he gesteigert. Im Sommer bleiben die OberflĂ€chentemperaturen tagsĂŒber niedrig, sofern ein PCM mit entsprechender Schmelztemperatur (<30°C) gewĂ€hlt wird, so dass auch zu diesen Zeiten die thermische Behaglichkeit verbessert wird. Es wurden drei LatentwĂ€rmespeichermaterialien untersucht: ein Paraffin (RT25), sowie zwei Salzhydrate auf Basis von Kalziumchloridhexahydrat (S27) und Lithiumnitrattrihydrat (L30). Aus Messwerten des Transmissions- und Reflexionsgrades im flĂŒssigen Zustand wurden die spektralen Daten der Brechungsindizes ermittelt. Strukturuntersuchungen der PCMs im festen Zustand erfolgten mittels Lichtmikroskopie und anhand von Streuverteilungsmessungen. Diese wurden mit der Mie-Theorie ausgewertet. Es wurde bei allen Materialien die Ausbildung einer Makrostruktur festgestellt, die wiederum mit einer Mikrostruktur unterlegt ist. Die Makrostruktur entsteht durch GrenzflĂ€chen Festkörper-Luft beim Erstarren und Zusammenziehen der Materialien, die Mikrostruktur durch sehr feine LufteinschlĂŒsse und GrenzflĂ€chen innerhalb des FestkörpergerĂŒsts. WĂ€hrend die Makrostruktur vor allem bei den Salzhydraten in ihrer GrĂ¶ĂŸe variiert und sich an die BehĂ€lterdicke anpasst, liegt die GrĂ¶ĂŸe der Mikrostrukturen bei allen drei Materialien relativ konstant im Bereich um die 5-20 ”m. Die Mikrostrukturen sind fĂŒr die Lichtstreuung verantwortlich. Unter der Annahme, dass die Werte der Brechungsindizes im festen und flĂŒssigen Zustand gleich sind, wurden mit dem 3-Fluss-Modell die spektralen effektiven Streukoeffizienten der festen PCMs bestimmt. Mit den ermittelten GrĂ¶ĂŸen lassen sich die optischen Eigenschaften der Materialien im festen und flĂŒssigen Zustand fĂŒr Schichtdicken zwischen 1,5 mm und 4 cm berechnen. Alle drei Materialien zeigen eine hohe Transmission im sichtbaren Spektralbereich und eine starke Absorption im Nahinfraroten. Dieses Verhalten ist fĂŒr den Einsatz in Tageslichtelementen gĂŒnstig, da man dort das sichtbare Licht zur Raumausleuchtung nutzen und den nahinfraroten Anteil in Form von WĂ€rme speichern will. FĂŒr den Einsatz im Tageslichtelement mĂŒssen die PCMs auslaufsicher in BehĂ€lter eingebracht werden. HierfĂŒr wurden Stegdoppelplatten (SDP) aus Plexiglas verwendet. Zwei Funktionsmuster mit RT25 und S27, bestehend aus einer WĂ€rmeschutzverglasung, hinter der die PCM-befĂŒllten SDPs angebracht waren, wurden unter natĂŒrlichen Klimabedingungen vermessen. Die Messdaten dienten zur Validierung eines Simulationsprogramms, mit dem das Verhalten der drei PCM-Tageslichtelemente unter genormten Bedingungen im Sommer- und Winterbetrieb untersucht wurde. Messungen und Simulationsrechnungen ergaben, dass die gewĂŒnschten Effekte (DĂ€mpfung der Energiegewinne tagsĂŒber, Verschiebung der Gewinne vom Tag in die Abend- und Nachtstunden, sowie Verbesserung der thermischen Behaglichkeit) mit den PCM-Tageslichtelementen erreicht werden. Anhand von Optimierungsrechnungen wurde gezeigt, dass die Energieeinkopplung in das PCM erhöht werden muss. Dies kann durch Beimengung absorbierender Materialien in das PCM oder durch Verwendung von BehĂ€ltern mit höherer Absorption geschehen. Bei derart optimierten Tageslichtelementen sind Schichtdicken von rund 5 mm PCM ausreichend. Lichttechnische Untersuchungen ergaben, dass die Tageslichtelemente mit PCM oft ein stark inhomogenes optisches Erscheinungsbild zeigen, vor allem wĂ€hrend des Phasenwechsels. Deshalb sollten fĂŒr den Einsatz in der Praxis Möglichkeiten zur Kaschierung vorgesehen werden. Dies lĂ€sst sich z.B. durch streuende BehĂ€lter erreichen. Problematisch ist die Dichtigkeit der BehĂ€lter, vor allem wenn Salzhydrate als PCM verwendet werden. Die Kristalle ĂŒben beim Wachstum starke KrĂ€fte auf die BehĂ€lterwandungen aus, so dass diese besonders bei grĂ¶ĂŸeren BehĂ€lterabmessungen dem Druck nicht standhalten und Risse bilden. Hier ist noch Entwicklungsarbeit zu leisten.This thesis investigates the suitability of phase change materials (PCMs) as energy storage in daylighting elements. PCMs store part of the incoming solar radiation on sunny days while releasing the stored heat during the evening hours and the night. This time shift in solar energy gains reduces cooling loads in summer, especially if combined with night-time ventilation. In winter, solar energy gains correlate much better with the heating demand of buildings, thus reducing fuel consumption. In addition, the higher system temperatures due to the phase change improve thermal comfort during the evening hours. If PCMs with low melting points (<30°C) are used, the system temperatures stay cool even on hot summer days. This improves thermal comfort in summer as well. Three different PCMs were investigated: a paraffin wax (RT25) and two salt hydrates with calciumchloridehexahydrate (S27) and lithiumnitratetrihydrate (L30) as base materials. The spectral refractive indices in liquid state were calculated from measured transmittance and reflectance values. In solid state, microscopy and scattering measurements in combination with Mie-calculactions were used to determine the size of the structures responsible for scattering. All three PCMs showed macroscopic structuring with microstructures embedded. Air gaps generated through volume decrease during solidification of the materials cause the macroscopic structuring. The microstructures are due to very fine air bubbles and solid-solid boundaries. While the macroscopic structuring varies in size - especially the salt hydrates adjust to the dimensions of the confinement - the size of the microstructures is in the range between 5-20 ”m for all of the materials. The microstructures are responsible for the scattering of light. With the assumption of non-changing refractive indices in liquid and solid state, the spectral effective scattering coefficients were calculated for the three PCMs in solid state via 3-flux-theory. The determined optical data were sufficient to calculate the optical properties of all three materials in liquid and solid state for a layer thickness between 1.5 mm and 4 cm. All PCMs show high transmission values in the visible wavelength range and high absorption in the NIR. This makes them very suitable for daylighting applications where the visible light is needed for room illumination and the NIR needs to be stored in the PCM as heat. For application as daylighting elements the PCM must be encapsulated. This was done by use of plastic containers, so-called double-skin sheets. Two samples with RT25 and S27 were built and incorporated into an outdoor measurement facility. The samples consisted of PCM-filled double-skin sheets behind a low-e-glazing. A simulation program was validated with the recorded data. This program was used to investigate the performance of the three PCM-daylighting-elements for winter and summer conditions. The above-mentioned effects (decrease in energy gains during the day, time-shift of energy gains into the evening hours and improvement of thermal comfort) could be verified. To optimize the daylighting-elements, the energy input into the PCM should be enhanced. This can be done by adding high-absorbing materials into the PCM or by using containers with higher absorption. In such optimized panels a PCM-thickness of 5 mm is sufficient. The system visual performance often had a very inhomogeneous appearance, especially during the melting and freezing process of the PCM. Therefore it is recommended to conceal these effects by using translucent containers with scattering properties instead of transparent ones. A major problem is the container tightness, especially if a salt hydrate is used as PCM. The crystal growth during the freezing process causes considerable stress on the containers which leads to cracks in bigger ones. This has to be worked on
    corecore