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Abstract 

 

Learning new concepts in mathematics and science often involves inhibiting prior beliefs 

or direct perceptual information. Recent neuroimaging work suggests that experts simply 

get better at inhibiting these pre-potent responses rather than replacing prior concepts 

with the newer concepts. A review of both behavioral and neuroimaging evidence with 

children suggests that improving inhibitory control is a key factor in learning new 

scientific and mathematical facts. This finding has implications for how these subjects are 

taught in the classroom and provides corroborating evidence for practices already in 

place.  
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Introduction 

 

What sets us aside from most other species is our ability to develop abstract and causally-

based concepts
1
. These concepts go beyond the information immediately available 

through direct perception and encode an understanding of how elements in the world 

relate to one another in general. Acquiring such abstract concepts underpins school-based 

learning in both mathematics
2
 and science

3, 4
. However, any pupil aiming to acquire 

“new” concepts in science and mathematics needs to overcome the strong pull of existing 

beliefs that have served them so well until then. In science education, this so-called 

“conceptual change” is a formidable obstacle in acquiring knowledge that goes beyond 

popular belief or perception
5
. Similarly, in mathematics, the child needs to go beyond the 

perceptually obvious solutions to understand and apply formal logical solutions to a 

problem
6, 7, 8

.  

 

Recent work in scientific reasoning has suggested that the inhibition of pre-exiting beliefs 

through the activation of the dorsal lateral prefrontal cortex (DLPFC) and the anterior 

cingulate cortex (ACC) is an integral part of the successful evaluation of counterintuitive 

science and mathematics evidence
9, 10

. Thus, in this article, we will review the role that 

concepts play in mathematics and science learning and explore how the brain controls the 

many competing beliefs that we hold in mind at any one time, in a way that allows us to 

take on new ideas. 

 

 
 

Figure 1. Learning counterintuitive concepts in mathematics and sciences involve 

increasingly proficient levels of selective inhibition of prior beliefs, and information 

acquired through direct experience and direct perception with age and experience. 

Acronymes:  ACC: anterior cingulate cortex, DLPFC: dorsolateral prefrontal cortex, 

VLPFC: ventrolateral prefrontal cortex. 
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Conceptual change in Science and Mathematics 
Scientific reasoning involves the evaluation of newly gathered evidence and the 

integration of this evidence into one’s existing concepts, theories or models of the 

physical and biological world. Contrary evidence may require the revision of existing 

theories
4, 11, 12

, or the development of an entirely new theory, a process called conceptual 

change
5, 13

. A key element of learning any new concepts is the need to overcome strongly 

held prior beliefs about a domain before new knowledge can be effectively assimilated
14, 

15
. Thus, a major challenge in mathematics and science education is the need for children 

to inhibit pre-existing beliefs or superficial perception in order to engage in acquiring and 

applying new and counterintuitive knowledge
13, 16, 17, 18

. Because of the importance of this 

process in scientific reasoning, many researchers have focused on investigating the naïve 

concepts that children and adults hold about phenomena in various scientific domains. In 

this approach, the goal is often to describe and uncover the mechanisms underlying 

conceptual change as a function of new learning
13. 20, 21

 in, for example, domains such as 

biology
22

, physics
23,

 or evolution
24

.  

 

But what happens as we become experts? Are old concepts overwritten, simply forgotten, 

or do they continue to impact on our thinking. Brain imaging data from adults (typically 

university students) are especially informative here. In a range of tasks it has been shown 

that the interplay between the anterior cingulate cortex (ACC), which supports conflict 

detection, and multiple regions of the prefrontal cortex supporting attention, inhibitory 

control, working memory and the integration of information, plays a critical role in the 

detection of, and subsequent modification of beliefs and scientific understanding in 

response to conflict between new and prior knowledge
10, 25, 26

. These results suggest that 

an important part of the neural basis of scientific and mathematical learning lies in the 

detection of an anomaly, the inhibition of prior beliefs, and the integration of new 

information and concepts into an updated scientific understanding.  

 

Conceptual knowledge in the brain 

 Brain imaging studies have made a real contribution to our understanding of how 

conceptual knowledge is represented
27

. Two general distinctions are identified: (1) a 

spatial one, whereby “perceptual” processing is associated with more posterior activity, 

over the areas involved in the first steps of visual analysis, while more abstract 

processing is associated with frontal and temporal activity, and (2) a temporal one, 

whereby “perceptual” processing precedes more abstract “conceptual” analysis.   

 

That said, “conceptual” knowledge is located in broad distributed networks
28

 involving 

many parts of the brain, including: (1) overlapping but partly distinct neural systems for 

processing concrete and abstract concepts, with greater involvement of bilateral 

association areas during concrete word processing, and processing of abstract concepts 

almost exclusively by the left hemisphere
29

, (2) amodal representations that transcend 

particular input modalities
30, 31

, and (3) embodied knowledge which is embedded within 

specific sensori-motor systems
32

. Access to this conceptual knowledge therefore requires 

executive control to leverage those parts of the network that are helpful for the current 
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task and suppress the rest
33, 34, 35

.  

 

Close collaboration between the various knowledge representation networks and a 

cognitive control network is therefore essential for the effective management of existing 

knowledge and the acquisition of new knowledge
36

. Given the complex interrelated 

networks involved in representing conceptual knowledge, a key challenge is to overcome 

interference and inhibit irrelevant information while activating the relevant information. 

Standard information processing approaches to cognition (that abstract away from neural 

processes) represent processes as encapsulated modules (e.g., attention module, working 

memory module, etc.). However, the control of knowledge within neural networks is 

embedded within particular domains of knowledge
33, 37

. This suggests that training 

executive control skills (such as general working memory capacity or inhibitory controls) 

without embedding the training within a specific knowledge domains may not have as 

much impact on the control of knowledge as training within a target domain. Indeed, a 

recent review of the effectiveness of executive functioning training
38

 finds that there is 

little evidence of transfer from training on abstract executive function tasks to academic 

skills, although embedding such activities within the classroom appears to be much more 

effective
39

. 

 

 

Inhibition and the control of conceptual knowledge 

The development of inhibition and the control of interference has long been 

established as a central limiting factor in cognitive development
7, 40

. Children have the 

capacity to make inhibitory responses from infancy, but only gradually get better at using 

this ability
41

. During interference control, children show more diffuse frontal cortex 

activations and a greater recruitment of posterior brain regions; adults by contrast show 

more focal activation in the DLPFC, ACC and inferior frontal gyrus
42, 43

. Similarly, 

neuroimaging evidence with children shows a shift from posterior perceptual processing 

regions to fronto-parietal activations correlating with age and improved performance on 

logic and mathematical problems
44, 45

. This has been interpreted as showing that children 

need to inhibit initial perceptually bound beliefs before being able to successfully apply 

the more abstract and (frontally dependent) reasoning skills required in math and logic. 

Convincing evidence of this shift was presented in a recent meta-analysis of functional 

magnetic resonance imaging (fMRI) data obtained over a decade (1999–2008) on more 

than 800 children and adolescents engaged in numerical tasks. This analysis revealed 

that, unlike adults, children primarily engage the frontal cortex when solving numerical 

tasks. This is consistent with the argument that, with increasing age, there is a shift from 

a reliance on the frontal cortex to reliance on the parietal cortex in mathematical 

reasoning tasks
46

, perhaps due to reduced cognitive load as children gradually acquire 

expertise in mathematics. Though it should be noted that this conclusion relies on the 

reference inference that because frontal regions are more active, greater inhibitory control 

is being exerted. Given the prolonged development of the frontal lobes
43

 it is not possible 

to be entirely sure that functions observed in the developing brain are identical to those 

observed in the mature adult brain, even if the activation patterns are similar. 
 

A second strand of evidence comes from Evans
47

 who posited that there are two 

competing cognitive systems underlying reasoning: the heuristic system, which is 
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evolutionarily old, fast operating, automatic and parallel; and the analytic system, which 

is slow operating, rule based, sequential in nature, and although limited by working 

memory capacity, underlies abstract logical reasoning and hypothetical thinking. A 

defining property of the dual process model of reasoning is that the analytic system is 

able to inhibit and override the heuristic system so that individuals can successfully carry 

out logical tasks
48, 49, 50

. Neuroimaging work on logical and scientific reasoning in adults 

has consistently shown that the inhibition of pre-existing beliefs, misleading perceptual-

biases, and intuitive heuristics is associated with the activation of the anterior cingulate 

cortex (ACC) and the prefrontal cortex, notably the inferior frontal cortex (IFG) and 

dorsolateral prefrontal cortex (DLPFC)
10, 11, 25, 26, 48

. Critically, Houdé et al.
45

 provided 

neuroimaging evidence of a switch, after a brief training in logical reasoning, from the 

heuristic system to the analytic system in adults.  

 

To explore this idea further, several labs
25, 26

 have used an fMRI protocol to obtain 

functional brain images of novices and experts while performing a cognitive task in 

mechanics, a scientific discipline for which misconceptions are known to be frequent and 

persistent. They found that experts, significantly more than novices, activate brain areas 

associated with inhibition; specifically, the right ventrolateral prefrontal cortex and the 

left dorsolateral prefrontal cortex. This suggested that the experts' misconceptions in 

mechanics had not been eradicated or transformed during learning but rather that they 

had remained encoded in their brains and were then inhibited to provide a correct answer. 

 

Evidence from the classroom 

Is there any behavioral evidence (relevant to educational practitioners) of the importance 

of inhibitory skills in mathematics and science learning?  Gilmore, et al.
51

 have recently 

explored how inhibition skills are related to overall mathematical achievement as well as 

factual, procedural and conceptual knowledge in 209 participants aged 11 to 12 years, 13 

to14 years, and adults. These authors found that general mathematics achievement was 

more strongly related to inhibition measured in numerical compared with non-numerical 

contexts. Inhibition skills were related to conceptual knowledge in older participants, but 

procedural skills in younger participants. There is also some evidence
52

 of a contribution 

of hippocampal–prefrontal circuits (specifically DLPFC and VLPFC) related to the early 

development of retrieval fluency in arithmetic problem solving. Finally, recent research 

suggests that executive function skills, such as suppressing distracting information and 

unwanted responses (inhibition) play a critical role in the development of mathematics 

proficiency
53, 54

.   

 

The continued development of prefrontal lobes during early adolescence
41, 43

 would imply 

an improvement with age in students’ abilities to inhibit task-irrelevant information and 

coordinate task-relevant information, thereby enhancing their scientific reasoning 

abilities as well as their ability to reject scientific misconceptions and accept scientific 

conceptions, well into adolescence. To test this hypothesis, two hundred and ten 13 to 16 

year old Korean secondary school pupils were tested with 4 tasks known to load on pro-

frontal activity, a test of scientific reasoning ability, and a test of air pressure concepts 

derived from kinetic- molecular theory
55

. The measures of prefrontal lobe activity 

correlated highly with scientific reasoning ability. In turn, prefrontal lobe activity and 
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scientific reasoning ability predicted concept gains and posttest performance. A 

subsequent principal components analysis showed that the study variables had two main 

components, which were interpreted as an inhibiting and a representing component. The 

authors interpreted this as evidence for both the inhibition of task-irrelevant information 

(i.e., the rejection of intuitively derived misconceptions) and the representation of task-

relevant information (i.e., complex hypothetico-deductive arguments and counterintuitive 

scientific conceptions about non-observable entities). 

 

Conclusion 

Imaging and behavioral methods from the developmental cognitive neurosciences have 

enabled us to make great strides in understanding what underlies the complex neural and 

cognitive processes involved in mathematical and scientific concept learning. In turn, this 

work should suggest classroom-based interventions that will improve both science and 

mathematics educational outcomes
53

. A few interventions have begun to implement 

cognitive control training within the classroom environment or within mathematics and 

science teaching
 16, 56, 57, 58

. Results show long-term effects and more generalizable 

benefits when the training is embedded within the curriculum than when it is not
16, 39

.  

 

Finally, it is reassuring to note that the recent emphasis on the importance of inhibitory 

control in learning science and mathematics, which emerges from the cognitive 

neuroscience research, is entirely consistent with older practice-based recommendations 

to encourage students to take a moment of “waiting time” before responding during 

science lessons
59

. By combining these practice-based discoveries with the emerging 

neural-based evidence, we can be increasingly confident of our success in improving 

conceptual learning in mathematics and science education. While there is already a sense 

among teachers that inhibitory control is a foundational skill in mathematics learning
60

, 

feeding back the cognitive neuroscience evidence can only strengthen this conviction and 

further improve practice. 

 



 8 

References 

 

1. Mareschal, D., Quinn, P. C., & Lea, S. E. G. (2013) The making of human concepts. 

Oxford. UK: Oxford University Press. 

 

2. Butterworth, B. (1999), The Mathematical Brain. Macmillan. 

 

3. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of 

conceptual change in childhood. Cognitive Psychology, 24, 535–585. 

 

4. Zimmerman, C. (2007). The development of scientific reasoning skills in elementary 

and middle school. Developmental Review, 27, 172-223. 

 

*5. Carey, S. (2000). Science education as conceptual change. Journal of Applied 

Developmental Psychology, 21, 13–19. 

This article succinctly describes how conceptual change is the critical challenge faced by 

science educators 

 

6. Inhelder, B. & Piaget, J. (1958) The growth of logical reasoning from childhood to 

adolescence. Oxford, UK: Routledge. 

 

7. Houdé, O., (2000) Inhibition and cognitive development: object, number, 

categorization and reasoning. Cognitive Development, 15, 63-73. 

 

8. Houdé, O. & Guichart, E. (2001) Negative priming effect after inhibition of 

number/length interference in a Piaget-like task Developmental Science, 4, 119–123. 
 

9. Borst, G., Poirel, N., Pinaue, A., Cassotti, M., & Houdé, O. (2013) Inhibitory control 

efficiency in Piaget-like class-inclusion task in school-age children and adults: A 

developmental negative priming study. Developmental Psychology, 49, 1366-1374. 

 

*10. Fugelsang, J. A., & Dunbar, K. N. (2005). Brain-based mechanisms underlying 

complex causal thinking. Neuropsychologia, 43, 1204–1213. 
 

This article shows how different neural systems are called in to play depending on the familiarity 

of the domain and its plausibility when making scientific causal judgements. 

 

11. Dunbar, K., Fugelsang, J., & Stein, C. (2007). Do naïve theories ever go away? Using 

brain and behavior to understand changes in concepts. In M. Lovett, & P. Shah (Eds.), 

Thinking with data (pp. 193-206). New York: Lawrence Erlbaum Associates. 

 

12. Fugelsang, J. A., Stein, C. B., Green, A. E., & Dunbar, K. N. (2004). Theory and data 

interactions of the scientific mind: Evidence from the molecular and the cognitive 

laboratory. Canadian Journal of Experimental Psychology, 58, 86–95. 



 9 

 

13. Vosniadou, S. (2007). Conceptual change and education. Human Development, 50, 

47-54. 

 

14. Hayes, B. K., Goodhew, A., Heit, E., & Gillan, J. (2003) The role of diverse 

instruction in conceptual change. Journal of Experimental Child Psychology, 86, 253-

276. 

 

15. Heit, E. (1997) Knowledge and conceptual change. In K. Lamberts and D. Shanks 

(Eds.), Knowledge, Concepts, and Categories (pp. 7-41). Hove, UK: Psychology Press. 

 

*16. Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function 

development in children 4 to 12 years old. Science, 333, 959–964.  

 

This article reviews what works in training executive function in young children 

 

17. Rousselle, L., Palmer, E., &  & Noel, M.P. (2004) Magnitude comparison in pre-

schoolers: What counts? Influence of perceptual variables. Journal of Experimental Child 

Psychology, 87, 57-84. 

 

18. Stavy, R., & Babai, R. (2010). Overcoming intuitive interference in mathematics: 

insights from behavioral, brain imaging and intervention studies. ZDM Mathematics 

Education, 42(6), 621–633.  

 

19. McNeil, N. M. & Alibali, M. W (2005) Why won’t you change your mind? 

Knowledge of operational patterns hinders learning and performance on equations. Child 

Development, 76, 883 – 899. 

 

20. Chi, M. T. H., Slotta, J. D., & De Leeuw, N. (1994) From things to processes: A 

theory of conceptual change for learning science concepts. Learning and Instruction, 4, 

27-43. 

 

21. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. 

Learning and Instruction, 4, 45-69. 

 

22. Zaitchik, D., Iqbal, Y, & Carey, S. (2014). The effect of executive function on 

biological reasoning in young children: An individual differences study. Child 

Development, 85, 160-175. 

 

23. McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the 

absence of external forces: Naive beliefs about the motion of objects. Science, 210, 

1139-1141. 

 

24. Shtulman, A. (2006), Qualitative differences between naïve and scientific theories of 

evolution. Cognitive Psychology, 52, 170-194. 

 



 10 

**25. Masson S, Potvin P, Riopel M, Brault-Foisy L-M. (2014) Differences in brain 

activation between novices and experts in science during a task involving a common 

misconception in electricity. Mind, Brain & Education, 8, 44–55. 

 

This article demonstrates that naïve concepts of electricity do not disappear in experts, 

but are simply better suppressed than in naïve participants. This is shown through 

increased activation of neural inhibitory control circuits in the experts. 

 

26. Foisy, L. M. B., Potvin, P., Riopel, M., & Masson, S. (2015) Is inhibition involved in 

overcoming a common physics misconception in mechanics? Trends in Neuroscience and 

Education, http://dx.doi.org/10.1016/j.tine.2015.03.001i 

 

27. Gliga, T. & Mareschal, D. (2007) What can neuroimaging tell us about the early 

development of visual categories. Cogniþie, Creier, Comportament [Cognition, Brain, 

Behavior], 10, 757-772. 

 

28. Kiefer, M. & Pulvermuller, F. (2012) Conceptual representations in mind and brain: 

Theoretical developments, current evidence and future directions. Cortex, 48, 805-825. 

 

29. Binder, J.R., Westbury, C.F., McKiernan, K.A., Possing, E. T., & Medler, D. A. 

(2005). Distinct brain systems for processing concrete and abstract concepts. Journal of 

cognitive neuroscience, 17, 905-917. 

 

30. Marquez, J. F., Canessa, N., Siri, S., Catricala, E., & Cappa, S. (2008) Conceptual 

knowledge in the brain: fMRI evidence for a featural organization. Brain Research, 1194, 

90-99. 

 

31. Fairhall,S. C. & Caramazza, A. (2013) Brain regions that represent amodal 

conceptual knowledge. The Journal of Neuroscience, 33, 10552-10558. 

 

32. Martin, A. (2007). The representation of object concepts in the brain. Annual Review 

of Psychology, 58, 25-45. 

 

33. Rogers, T. T. & McClelland, J. L. (2008) Precis of Semantic Cognition: A parallel 

distributed processing approach. Behavioral and Brain Sciences, 31, 689-714. 

 

34. Whitney C, Kirk M, O’Sullivan J, Lambon Ralph MA, Jefferies E (2011) The neural 

organization of semantic control: TMS evidence for a distributed network in left inferior 

frontal and posterior middle temporal gyrus. Cerebral Cortex, 21,1066 –1075. 

 

35. Snyder HR, Hutchison N, Nyhus E, Curran T, Banich MT, O'Reilly RC, Munakata Y. 

(2010) Neural inhibition enables selection during language processing. Proc Natl Acad 

Sci U S A. 107(38), 16483-16488. 

 

36. Chein, J. & Schneider, W. (2012). The brain’s learning and cognitive architecture. 

Current Directions in Psychological Science, 21, 78-84. 



 11 

 

37. Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, 

T. R. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences, 

15, 453-459. 

 

38. Wass, S. V., Scerif, G & Johnson, M.H.  (2012) Training attentional control and 

working memory – Is younger, better? Developmental Review, 32, 360–387. 

 

39.  Holmes, J.  & Gathercole, S. E. (2014) Taking working memory 

training from the laboratory into schools, Educational Psychology, 34, 4, 440-450, DOI: 

10.1080/01443410.2013.797338 

 

40. Dempster, F. N. (1992) The rise and fall of the inhibitory mechanisms: Towards a 

unified theory of cognitive development and aging. Developmental Review, 12, 45-72. 

 

*41. Luna, B., Padmananbhan, A., & O’Hearn, K. (2010) What has fMRI told us about 

developmental cognitive control through adolescence? Brain and Cognition, 72, 101-113. 

 

This is an excellent review of the development of the neural circuits that underlie 

improved inhibitory control with age 

 

42. Durston, S., Thomas, K. M., Yang, Y., Ulug, A. M., Zimmerman, R. D., & Casey, B. 

J. (2002) A neural basis for the development of inhibitory control. Developmental 

Science, 5, F9-F16. 

 

43. Tamm, L, Mennon, V. & Reiss, A. L. (2002). Maturation of the brain associated with 

response inhibition. J. Am. Acad. Child Adolesc Psychiatry, 41, 1231-1238. 

 

44. Ferrer, E., O’Hare, E.D., & Bunge, S.A. (2009). Fluid reasoning and the developing 

brain. Frontiers in Neuroscience, 3, 46-51. 

 

45. Houde, O., Zago, L., Mellet, E., Moutier, S., Pineau, A., Mazoyer, B. & Tzourio-

Mazoyer (2000) Shifting from the perceptual brain to the logical brain: The neural impact 

of cognitive inhibition training. Journal of Cognitive Neuroscience, 12, 721-728. 

 

*46. Houde, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, 

reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 

studies including 842 children. Developmental Science, 13, 876-885. 

 

This article provides an important meta-analysis of the shift form frontal occipital 

activation with age while engaged in mathematical reasoning tasks 

 

47. Evans, J.S.B.T. (2011) Dual-process theories of reasoning: Contemporary issues and 

developmental applications. Developmental Review, 31, 86-102. 

 



 12 

48. Houde, O. & Tzourio-Mazoyer,  N. (2003) Neural foundations of logical and 

mathematical cognitions. Nature Reviews Neuroscience, 4, 507-514. 

 

49. Prado, J., & Noveck, I. A. (2007). Overcoming perceptual features in logical 

reasoning: A parametric functional magnetic resonance imaging study. Journal of 

Cognitive Neuroscience, 19, 642–657. 

 

50. Moutier, S., Plagne-Cayeux, S., Melot, A.M. & Houdé, O. (2006) Syllogistic 

reasoning and belief-bias inhibition in school children: evidence from a negative priming 

paradigm. Developmental Science, 9, 166–172. 
 

*51. Gilmore, C., Keeble, S., Richardson, S., Cragg, L. (2015). The role of cognitive 

inhibition in different components of arithmetic. ZDM Mathematics Education, 47:771-

782. 

 

This article provides a detailed analysis of what mathematical reasoning skills are most 

linked to inhibitory control skills 

 

 

52. Cho, S., Metcalfe, A. W. S., Young, C. B., Ryali, S, Geary, D. C. & Menon, V. 

(2012). Hippocampal-prefrontal engagement and dynamic causal interactions in the 

maturation of children’s fact retrieval. Journal of Cognitive Neuroscience, 24, 1849-

1866. 

 

53. Cragg, L. & Gilmore, C. (2014) Skills underlying mathematics: The role of executive 

function in the development of mathematical proficiency. Trends in Neuroscience and 

Education, 3, 63-68. 

 

54. Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., Simms, V. 

& Inglis, M. (2013) Individual differences in inhibitory control, not non-verbal number 

acuity, correlate with mathematics acheivment. PLoS ONE, 8(6), e67374 

 

55. Kwon, Y. J. & Lawson, A. E. (2000) Linking brain growth with the development of 

scientific reasoning ability and conceptual change during adolescence. Journal of 

Research in Science Teaching, 37, 44-62. 

 

56. Klahr, D., Zimmerman, C. & Jirout, J. ( 2011). Educational interventions to advance 

children’s scientific thinking. Science, 333, 971-975. 

 

57. Greenberg, M. T., Kusche, C. A., Cook, E. T., & Quamma, J. P. (1995). Promoting 

emotional competence in school-aged children: The effects of the PATHS curriculum. 

Development and psychopathology, 7(01), 117-136. 

 

58. Riggs, N. R., Greenberg, M. T., Kusché, C. A., & Pentz, M. A. (2006). The 

mediational role of neurocognition in the behavioral outcomes of a social-emotional 

prevention program in elementary school students: effects of the PATHS Curriculum. 

Prevention Science, 7, 91–102.  



 13 

 

59. Rowe, M. B. (1980) Pausing principles and their effect on reasoning in science. New 

Directions for Community Colleges, 31, 27-34. 

 

60. Gilmore, C. & Cragg, L. (2014) Teachers’ understanding of the role of executive 

functions in mathematics learning. Mind, Brain and Education, 8, 132-136. 

 

 

 



 14 

Figure 1: 

 

 

 


