95 research outputs found

    A Descriptive Analysis of Factors Related to the Effectiveness of Educational Technology Implementations in Poorer, Rural School Districts

    Get PDF
    As the use of educational technology in our classrooms continues to increase, schools must take every reasonable step they can to ensure the time and money invested in educational technology is not wasted. This is especially true in poorer, rural school districts that do not always have the money and personnel that larger, more affluent school districts have access to. These poorer, rural schools must take extra precautions to ensure their investment of limited resources has the greatest gain possible. The goal of this thesis was to identify those specific factors related to the effectiveness of educational technology implementations to which poorer, rural school districts must pay added attention. This work began with an extensive review of the existing literature on the effective use of educational technology. This review was followed by a survey of several poorer, rural school districts throughout Southwest Michigan. These surveys asked school districts for their insights into important factors related to the effectiveness of educational technology implementations as based upon their own successes and failures. In the end, this research found that poorer, rural schools and their larger, more affluent counterparts share the majority of these factors, but some of the factors take on added importance for the poorer, rural school

    Numerical modelling of microRNA-mediated mRNA decay identifies novel mechanism of microRNA controlled mRNA downregulation

    Get PDF
    Post-transcriptional control of mRNA by micro-RNAs (miRNAs) represents an important mechanism of gene regulation. miRNAs act by binding to the 3′ untranslated region (3′UTR) of an mRNA, affecting the stability and translation of the target mRNA. Here, we present a numerical model of miRNA-mediated mRNA downregulation and its application to analysis of temporal microarray data of HepG2 cells transfected with miRNA-124a. Using the model our analysis revealed a novel mechanism of mRNA accumulation control by miRNA, predicting that specific mRNAs are controlled in a digital, switch-like manner. Specifically, the contribution of miRNAs to mRNA degradation is switched from maximum to zero in a very short period of time. Such behaviour suggests a model of control in which mRNA is at a certain moment protected from binding of miRNA and further accumulates with a basal rate. Genes associated with this process were identified and parameters of the model for all miRNA-124a affected mRNAs were computed

    Trypanosomatid RACK1 Orthologs Show Functional Differences Associated with Translation Despite Similar Roles in Leishmania Pathogenesis

    Get PDF
    RACK1 proteins belong to the eukaryote WD40-repeat protein family and function as spatial regulators of multiple cellular events, including signaling pathways, the cell cycle and translation. For this latter role, structural and genetic studies indicate that RACK1 associates with the ribosome through two conserved positively charged amino acids in its first WD40 domain. Unlike RACK1s, including Trypanosoma brucei RACK1 (TbRACK1), only one of these two positively-charged residues is conserved in the first WD40 domain of the Leishmania major RACK1 ortholog, LACK. We compared virulence-attenuated LACK single copy (LACK/-) L. major, with L. major expressing either two LACK copies (LACK/LACK), or one copy each of LACK and TbRACK1 (LACK/TbRACK1), to evaluate the function of these structurally distinct RACK1 orthologs with respect to translation, viability at host temperatures and pathogenesis. Our results indicate that although the ribosome-binding residues are not fully conserved in LACK, both LACK and TbRACK1 co-sedimented with monosomes and polysomes in LACK/LACK and LACK/TbRACK1 L. major, respectively. LACK/LACK and LACK/TbRACK1 strains differed in their sensitivity to translation inhibitors implying that minor sequence differences between the RACK1 proteins can alter their functional properties. While biochemically distinguishable, both LACK/LACK and LACK/TbRACK1 lines were more tolerant of elevated temperatures, resistant to translation inhibitors, and displayed robust pathogenesis in vivo, contrasting to LACK/- parasites

    Molecular Networks in FGF Signaling: Flotillin-1 and Cbl-Associated Protein Compete for the Binding to Fibroblast Growth Factor Receptor Substrate 2

    Get PDF
    Fibroblast growth factor receptor substrate 2 (FRS2α) is a signaling adaptor protein that regulates downstream signaling of many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1 knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine kinase signaling, especially the mitogen activated protein kinase pathway

    Targeting Primitive Chronic Myeloid Leukemia Cells by Effective Inhibition of a New AHI-1BCR-ABL-JAK2 Complex

    Get PDF
    This is a pre-copyedited, author-produced version of an article accepted for publication in JNCI: Journal of the National Cancer Institute following peer review. The version of record Chen, M., et al. (2013). "Targeting Primitive Chronic Myeloid Leukemia Cells by Effective Inhibition of a New AHI-1–BCR-ABL–JAK2 Complex." JNCI: Journal of the National Cancer Institute 105(6): 405-423. is available online at: https://doi.org/10.1093/jnci/djt006This work was funded by the Canadian Cancer Society (grant 700289), in part by the Canadian Institutes of Health Research, the Leukemia & Lymphoma Society of Canada, and the Cancer Research Society (XJ), the Canadian Cancer Society Research Institute (AE, XJ, CE), Cancer Research UK Programme grant C11074/A11008 (TLH), the Glasgow Experimental Cancer Medicine Centre, which is funded by Cancer Research UK and by the Chief Scientist’s Office (Scotland), and Cancer Research UK grant C973/A9894 (JP, JS). M. Chen was supported by a fellowship from Lymphoma Foundation Canada, and P. Gallipoli was supported by Medical Research Council grant G1000288. X. Jiang was a Michael Smith Foundation for Health Research Scholar

    Silencing Nuclear Pore Protein Tpr Elicits a Senescent-Like Phenotype in Cancer Cells

    Get PDF
    Background: Tpr is a large coiled-coil protein located in the nuclear basket of the nuclear pore complex for which many different functions were proposed from yeast to human. Methodology/Principal Findings: Here we show that depletion of Tpr by RNA interference triggers G0–G1 arrest and ultimately induces a senescent-like phenotype dependent on the presence of p53. We also found that Tpr depletion impairs the NES [nuclear export sequence]-dependent nuclear export of proteins and causes partial co-depletion of Nup153. In addition Tpr depletion impacts on level and function of the SUMO-protease SENP2 thus affecting SUMOylation regulation at the nuclear pore and overall SUMOylation in the cell. Conclusions: Our data for the first time provide evidence that a nuclear pore component plays a role in controlling cellular senescence. Our findings also point to new roles for Tpr in the regulation of SUMO-1 conjugation at the nuclear pore and directly confirm Tpr involvement in the nuclear export of NES-proteins

    Genomics and proteomics approaches to the study of cancer-stroma interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development and progression of cancer depend on its genetic characteristics as well as on the interactions with its microenvironment. Understanding these interactions may contribute to diagnostic and prognostic evaluations and to the development of new cancer therapies. Aiming to investigate potential mechanisms by which the tumor microenvironment might contribute to a cancer phenotype, we evaluated soluble paracrine factors produced by stromal and neoplastic cells which may influence proliferation and gene and protein expression.</p> <p>Methods</p> <p>The study was carried out on the epithelial cancer cell line (Hep-2) and fibroblasts isolated from a primary oral cancer. We combined a conditioned-medium technique with subtraction hybridization approach, quantitative PCR and proteomics, in order to evaluate gene and protein expression influenced by soluble paracrine factors produced by stromal and neoplastic cells.</p> <p>Results</p> <p>We observed that conditioned medium from fibroblast cultures (FCM) inhibited proliferation and induced apoptosis in Hep-2 cells. In neoplastic cells, 41 genes and 5 proteins exhibited changes in expression levels in response to FCM and, in fibroblasts, 17 genes and 2 proteins showed down-regulation in response to conditioned medium from Hep-2 cells (HCM). Nine genes were selected and the expression results of 6 down-regulated genes (<it>ARID4A</it>, <it>CALR</it>, <it>GNB2L1</it>, <it>RNF10</it>, <it>SQSTM1</it>, <it>USP9X</it>) were validated by real time PCR.</p> <p>Conclusions</p> <p>A significant and common denominator in the results was the potential induction of signaling changes associated with immune or inflammatory response in the absence of a specific protein.</p
    corecore