284 research outputs found

    Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance in Industrial Applications

    Get PDF
    This article advances innovative approaches to the design and implementation of an embedded intelligent system for predictive maintenance (PdM) in industrial applications. It is based on the integration of advanced artificial intelligence (AI) techniques into micro-edge Industrial Internet of Things (IIoT) devices running on Armr Cortexr microcontrollers (MCUs) and addresses the impact of a) adapting to the constraints of MCUs, b) analysing sensor patterns in the time and frequency domain and c) optimising the AI model architecture and hyperparameter tuning, stressing that hardware–software co-exploration is the key ingredient to converting micro-edge IIoT devices into intelligent PdM systems. Moreover, this article highlights the importance of end-to-end AI development solutions by employing existing frameworks and inference engines that permit the integration of complex AI mechanisms within MCUs, such as NanoEdgeTM AI Studio, Edge Impulse and STM32 Cube.AI. Both quantitative and qualitative insights are presented in complementary workflows with different design and learning components, as well as in the backend flow for deployment onto IIoT devices with a common inference platform based on Armr Cortexr-M-based MCUs. The use case is an n-class classification based on the vibration of generic motor rotating equipment. The results have been used to lay down the foundation of the PdM strategy, which will be included in future work insights derived from anomaly detection, regression and forecasting applications.publishedVersio

    Artificial Intelligence Advancements for Digitising Industry

    Get PDF
    In the digital transformation era, when flexibility and know-how in manufacturing complex products become a critical competitive advantage, artificial intelligence (AI) is one of the technologies driving the digital transformation of industry and industrial products. These products with high complexity based on multi-dimensional requirements need flexible and adaptive manufacturing lines and novel components, e.g., dedicated CPUs, GPUs, FPGAs, TPUs and neuromorphic architectures that support AI operations at the edge with reliable sensors and specialised AI capabilities. The change towards AI-driven applications in industrial sectors enables new innovative industrial and manufacturing models. New process management approaches appear and become part of the core competence in the organizations and the network of manufacturing sites. In this context, bringing AI from the cloud to the edge and promoting the silicon-born AI components by advancing Moore’s law and accelerating edge processing adoption in different industries through reference implementations becomes a priority for digitising industry. This article gives an overview of the ECSEL AI4DI project that aims to apply at the edge AI-based technologies, methods, algorithms, and integration with Industrial Internet of Things (IIoT) and robotics to enhance industrial processes based on repetitive tasks, focusing on replacing process identification and validation methods with intelligent technologies across automotive, semiconductor, machinery, food and beverage, and transportation industries.publishedVersio

    An Internet of Things based framework to enhance just-in-time manufacturing

    Get PDF
    Just-in-time manufacturing is a main manufacturing strategy used to enhance manufacturers’ competitiveness through inventory and lead time reduction. Implementing just-in-time manufacturing has a number of challenges, for example, effective, frequent and real-time information sharing and communication between different functional departments, responsive action for adjusting the production plan against the continually changing manufacturing situation. Internet of Things technology has the potential to be used for capturing desired data and information from production environment in real time, and the collected data and information can be used for adjusting production schedules corresponding to the changing production environment. This article presents an Internet of Things based framework to support responsive production planning and scheduling in just-in-time manufacturing. The challenges of implementing just-in-time manufacturing are identified first and then an Internet of Things based solution is proposed to address these challenges. A framework to realise the proposed Internet of Things solution is developed and its implementation plan is suggested based on a case study on automotive harness parts manufacturing. This research contributes knowledge to the field of just-in-time manufacturing by incorporating the Internet-of-Things technology to improve the connectivity of production chains and responsive production scheduling capability

    Critical infrastructures cybersecurity and the maritime sector

    Get PDF
    The paper addresses cyber-security in the maritime field, a sector increasingly vulnerable to cyber-attacks due to advances that are already in the process of implementation. This paper explores the level of knowledge and training required on the subject and its interaction with marine ecosystem. For this reason, we will carry out a deep bibliographic review in which we will support our later study. We will analyze the results obtained in an online questionnaire answered by experienced maritime professionals. The results show a lack of general knowledge in the field of maritime cybersecurity. Therefore, it is necessary to increase training levels in the maritime sector and the port interface connection with the supply chain. © 2020 The Author(s)

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Improving Just-in-Time Manufacturing Operations by Using Internet of Things Based Solutions

    Get PDF
    Just in time (JIT) manufacturing is one of the main methodologies used to enhance manufacturers' competitiveness through inventory and lead time reduction. However implementing JIT has some challenges, e.g. lack of required information sharing or communication between stakeholders, insufficient sound action or planning system etc. Internet of Things (IoT) technology has the potential to be used for acquiring data and information in real time to facilitate dynamic JIT manufacturing. This paper presents a research on using IoT based solution to enhance JIT manufacturing. The general challenges of JIT implementation are identified first, then an IoT based solution is proposed to address the JIT challenges in a selected case study. A framework to support the proposed IoT solution is developed and its implementation steps are suggested

    Ethical Considerations and Trustworthy Industrial AI Systems

    Get PDF
    The ethics of AI in industrial environments is a new field within applied ethics, with notable dynamics but no well-established issues and no standard overviews. It poses many more challenges than similar consumer and general business applications, and the digital transformation of industrial sectors has brought into the ethical picture even more considerations to address. This relates to integrating AI and autonomous learning machines based on neural networks, genetic algorithms, and agent architectures into manufacturing processes. This article presents the ethical challenges in industrial environments and the implications of developing, implementing, and deploying AI technologies and applications in industrial sectors in terms of complexity, energy demands, and environmental and climate changes. It also gives an overview of the ethical considerations concerning digitising industry and ways of addressing them, such as potential impacts of AI on economic growth and productivity, workforce, digital divide, alignment with trustworthiness, transparency, and fairness. Additionally, potential issues concerning the concentration of AI technology within only a few companies, human-machine relationships, and behavioural and operational misconduct involving AI are examined. Manufacturers, designers, owners, and operators of AI—as part of autonomy and autonomous industrial systems—can be held responsible if harm is caused. Therefore, the need for accountability is also addressed, particularly related to industrial applications with non-functional requirements such as safety, security, reliability, and maintainability supporting the means of AI-based technologies and applications to be auditable via an assessment either internally or by a third party. This requires new standards and certification schemes that allow AI systems to be assessed objectively for compliance and results to be repeatable and reproducible. This article is based on work, findings, and many discussions within the context of the AI4DI project.publishedVersio

    A new device used in the restoration of kinematics after total facet arthroplasty

    Get PDF
    Facet degeneration can lead to spinal stenosis and instability, and often requires stabilization. Interbody fusion is commonly performed, but it can lead to adjacent-segment disease. Dynamic posterior stabilization was performed using a total facet arthroplasty system. The total facet arthroplasty system was originally intended to restore the natural motion of the posterior stabilizers, but follow-up studies are lacking due to limited clinical use. We studied the first 14 cases (long-term follow-up) treated with this new device in our clinic. All patients were diagnosed with lumbar stenosis due to hypertrophy of the articular facets on one to three levels (maximum). Disk space was of normal height. The design of this implant allows its use only at levels L3-L4 and L4-L5. We implanted nine patients at the L4-L5 level and four patients at level L3-L4. Postoperative follow-up of the patients was obtained for an average of 3.7 years. All patients reported persistent improvement of symptoms, visual analog scale score, and Oswestry Disability Index score. Functional scores and dynamic radiographic imaging demonstrated the functional efficacy of this new implant, which represents an alternative technique and a new approach to dynamic stabilization of the vertebral column after interventions for spine decompression. The total facet arthroplasty system represents a viable option for dynamic posterior stabilization after spinal decompression. For the observed follow-up, it preserved motion without significant complications or apparent intradisk or adjacent-disk degeneration. © 2014 Vermesan et al
    corecore