786 research outputs found

    Computer numerical control vertical machining centre feed drive modelling using the transmission line technique

    Get PDF
    This study presents a novel application of the Transmission Line Matrix Method (TLM) for the modelling of the dynamic behaviour of non-linear hybrid systems for CNC machine tool drives. The application of the TLM technique implies the dividing of the ball-screw shaft into a number of identical elements in order to achieve the synchronisation of events in the simulation, and to provide an acceptable resolution according to the maximum frequency of interest. This entails the use of a high performance computing system with due consideration to the small time steps being applied in the simulation. Generally, the analysis of torsion and axial dynamic effects on a shaft implies the development of independent simulated models. This study presents a new procedure for the modelling of a ball-screw shaft by the synchronisation of the axial and torsion dynamics into the same model. The model parameters were obtained with equipments such as laser interferometer, ball bar, electronic levels, signal acquisition systems etc. The MTLM models for single and two-axis configurations have been simulated and matches well with the measured responses of machines. The new modelling approach designated the Modified Transmission Line Method (MTLM) extends the TLM approach retaining all its inherent qualities but gives improved convergence and processing speeds. Further work since, not the subject of this paper, have identified its potential for real time application

    A simple approach for on-line PI controller tuning using closed-loop setpoint responses

    Get PDF
    The proposed method is similar to the Ziegler-Nichols (1942) tuning method, but it is faster to use and does not require the system to approach instability with sustained oscillations. The method requires one closed-loop step setpoint response experiment using a proportional only controller with gain Kc0. Based on simulations for a range of first-order with delay processes, simple correlations have been derived to give PI controller settings similar to those of the SIMC tuning rules (Skogestad, 2003). The controller gain (Kc/Kc0) is only a function of the overshoot observed in the setpoint experiment whereas the controller integral time (τI) is mainly a function of the time to reach the peak (tp). Importantly, the method includes a detuning factor F that allows the user to adjust the final closed-loop response time and robustness. The proposed tuning method, originally derived for first-order with delay processes, has been tested on a wide range of other processes typical for process control applications and the results are comparable with the SIMC tunings using the open-loop model

    Overview of MPC applications in supply chains: Potential use and benefits in the management of forest-based supply chains

    Full text link

    Gas Phase Train in Upstream Oil and Gas Fields: PART-III Control Systems Design

    Get PDF
    This paper presents and implements a control structure solution based on MPC for two control problems affecting gas phase train in the existing oil and gas production plants:The disturbance growth in the series connected process and the control system dependency onoperators. This work examines the integration of small size MPC’s with the classical PID control system to handle interactive control loops in three series gas treatment processes

    Pipeline network features and leak detection by cross-correlation analysis of reflected waves

    Get PDF
    This paper describes progress on a new technique to detect pipeline features and leaks using signal processing of a pressure wave measurement. Previous work (by the present authors) has shown that the analysis of pressure wave reflections in fluid pipe networks can be used to identify specific pipeline features such as open ends, closed ends, valves, junctions, and certain types of bends. It was demonstrated that by using an extension of cross-correlation analysis, the identification of features can be achieved using fewer sensors than are traditionally employed. The key to the effectiveness of the technique lies in the artificial generation of pressure waves using a solenoid valve, rather than relying upon natural sources of fluid excitation. This paper uses an enhanced signal processing technique to improve the detection of leaks. It is shown experimentally that features and leaks can be detected around a sharp bend and up to seven reflections from features/ leaks can be detected, by which time the wave has traveled over 95 m. The testing determined the position of a leak to within an accuracy of 5%, even when the location of the reflection from a leak is itself dispersed over a certain distance and, therefore, does not cause an exact reflection of the wave

    Cumulant/bispectrum model structure identification applied to a pH neutralization process

    Get PDF
    A process model structure identification criteria based on the cumulants and bispectrum of output response data is applied to a laboratory-scale pH neutralization process. The resulting model structure is appropriate and is consistent with a priori physical information

    Cumulant/bispectrum model structure identification applied to a pH neutralization process

    Get PDF
    A process model structure identification criteria based on the cumulants and bispectrum of output response data is applied to a laboratory-scale pH neutralization process. The resulting model structure is appropriate and is consistent with a priori physical information

    On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes

    Get PDF
    In this paper, a comparative study is done on the time and frequency domain tuning strategies for fractional order (FO) PID controllers to handle higher order processes. A new fractional order template for reduced parameter modeling of stable minimum/non-minimum phase higher order processes is introduced and its advantage in frequency domain tuning of FOPID controllers is also presented. The time domain optimal tuning of FOPID controllers have also been carried out to handle these higher order processes by performing optimization with various integral performance indices. The paper highlights on the practical control system implementation issues like flexibility of online autotuning, reduced control signal and actuator size, capability of measurement noise filtration, load disturbance suppression, robustness against parameter uncertainties etc. in light of the above tuning methodologies.Comment: 27 pages, 10 figure
    corecore