195 research outputs found

    Evidence based medicine on the use of botulinum toxin for headache disorders

    Get PDF
    Summary. Botulinum toxin blocks the release of acetylcholine from motor nerve terminals and other cholinergic synapses. In animal studies botulinum toxin also reduces the release of neuropeptides involved in pain perception. The implications of these observations are not clear. Based on the personal experiences of headache therapists, botulinum toxin injections have been studied in patients with primary headaches, namely tension-type headache (TTH), chronic migraine (CM) and chronic daily headache (CDH). So far, the results of randomized, double-blind, placebo controlled trials on botulinum toxin in a total of 1117 patients with CDH, 1495 patients with CM, and 533 patients with TTH have been published. Botulinum toxin and placebo injections have been equally effective in these studies. In some of the studies, the magnitude of this effect was similar to that of established oral pharmacotherapy. This finding may help to explain the enthusiasm that followed the first open-label use of botulinum toxin in patients with headache. However, research is continuing to determine the efficacy of botulinum toxin in certain subgroups of patients with CM or CDH

    Lower Motoneuron Dysfunction Impacts Spontaneous Motor Recovery in Acute Cervical Spinal Cord Injury.

    Get PDF
    Paresis after spinal cord injury (SCI) is caused by damage to upper and lower motoneurons (LMNs) and may differentially impact neurological recovery. This prospective monocentric longitudinal observational study investigated the extent and severity of LMN dysfunction and its impact on upper extremity motor recovery after acute cervical SCI. Pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials recorded by needle electromyography (EMG) were taken as parameters for LMN dysfunction and its relation to the extent of myelopathy in the first available spine magnetic resonance imaging (MRI) was determined. Motor recovery was assessed by standardized neurological examination within the first four weeks (acute stage) and up to one year (chronic stage) after injury. Eighty-five muscles of 17 individuals with cervical SCI (neurological level of injury from C1 to C7) and a median age of 54 (28-59) years were examined. The results showed that muscles with signs of LMN dysfunction peaked at the lesion center (Χ2 [2, n = 85] = 6.6, p = 0.04) and that the severity of LMN dysfunction correlated with T2-weighted hyperintense MRI signal changes in routine spine MRI at the lesion site (Spearman ρ = 0.31, p = 0.01). Muscles exhibiting signs of LMN dysfunction, as indicated by pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials, were associated with more severe paresis in both the acute and chronic stages after SCI (Spearman ρ acute = -0.22, p = 0.04 and chronic = -0.31, p = 0.004). Moreover, the severity of LMN dysfunction in the acute stage was also associated with a greater degree of paresis (Spearman ρ acute = -0.24, p = 0.03 and chronic = -0.35, p = 0.001). While both muscles with and without signs of LMN dysfunction were capable of regaining strength over time, those without LMN dysfunctions had a higher potential to reach full strength. Muscles with signs of LMN dysfunction in the acute stage displayed increased amplitudes of motor unit action potentials with chronic-stage needle EMG, indicating reinnervation through peripheral collateral sprouting as compensatory mechanism (Χ2 [1, n = 72] = 4.3, p = 0.04). Thus, LMN dysfunction represents a relevant factor contributing to motor impairment and recovery in acute cervical SCI. Defined recovery mechanisms (peripheral reinnervation) may at least partially underlie spontaneous recovery in respective muscles. Therefore, assessment of LMN dysfunction could help refine prediction of motor recovery after SCI

    Autonomic and peripheral nervous system function in acute tick-borne encephalitis

    Get PDF
    ObjectivesTick-borne encephalitis (TBE) is an emerging flaviviral zoonosis in Central and Eastern Europe. TBE can present as meningitis, meningoencephalitis, or meningoencephalomyelitis. Dysfunction of the autonomic (ANS) and peripheral motoric and sensory nervous system (PNS) might contribute to acute and long-term complications. We aimed to examine, whether the ANS and PNS are affected in acute TBE. MethodsFourteen patients with acute TBE, 17 with diabetic polyneuropathy (d-PNP), and 30 healthy controls (HC) were examined in our single-center, prospective study. ANS and PNS function was assessed by time- and frequency-domain parameters of the heart rate (HR) variability at rest and deep respiration, and by sural and tibial nerve neurography. Primary endpoint was the HR variability at rest measured by root mean square of the successive differences (RMSSD). Autonomic symptoms and quality of life (QoL) were assessed by questionnaires. ResultsTick-borne encephalitis patients had a lower RMSSD at rest (TBE 13.17.0, HC 72.7 +/- 48.3; P<0.001) and deep respiration (TBE 42.8 +/- 27.0, HC 109.7 +/- 68.8; P<0.01), an increased low-frequency to high-frequency power component ratio at rest (TBE 4.0 +/- 4.0, HC 0.8 +/- 0.5; P<0.001), and a higher minimal heart rate at rest (TBE 85.4 +/- 7.0, HC 69.5 +/- 8.5; P<0.001), all similar to patients with d-PNP, indicating sympathovagal imbalance with increased sympathetic activation. Compared to HC, sural and tibial nerve conduction velocities and action potential amplitudes were reduced, ANS symptoms were more frequent, and QoL was lower in patients with TBE. ConclusionsThe ANS and to a lesser degree the PNS are affected by acute TBE, which could potentially contribute to short- and long-term morbidity

    Biomarker Supervised G-CSF (Filgrastim) Response in ALS Patients

    Get PDF
    Objective: To evaluate safety, tolerability and feasibility of long-term treatment with Granulocyte-colony stimulating factor (G-CSF), a well-known hematopoietic stem cell factor, guided by assessment of mobilized bone marrow derived stem cells and cytokines in the serum of patients with amyotrophic lateral sclerosis (ALS) treated on a named patient basis.Methods: 36 ALS patients were treated with subcutaneous injections of G-CSF on a named patient basis and in an outpatient setting. Drug was dosed by individual application schemes (mean 464 Mio IU/month, range 90-2160 Mio IU/month) over a median of 13.7 months (range from 2.7 to 73.8 months). Safety, tolerability, survival and change in ALSFRS-R were observed. Hematopoietic stem cells were monitored by flow cytometry analysis of circulating CD34+ and CD34+CD38− cells, and peripheral cytokines were assessed by electrochemoluminescence throughout the intervention period. Analysis of immunological and hematological markers was conducted.Results: Long term and individually adapted treatment with G-CSF was well tolerated and safe. G-CSF led to a significant mobilization of hematopoietic stem cells into the peripheral blood. Higher mobilization capacity was associated with prolonged survival. Initial levels of serum cytokines, such as MDC, TNF-beta, IL-7, IL-16, and Tie-2 were significantly associated with survival. Continued application of G-CSF led to persistent alterations in serum cytokines and ongoing measurements revealed the multifaceted effects of G-CSF.Conclusions: G-CSF treatment is feasible and safe for ALS patients. It may exert its beneficial effects through neuroprotective and -regenerative activities, mobilization of hematopoietic stem cells and regulation of pro- and anti-inflammatory cytokines as well as angiogenic factors. These cytokines may serve as prognostic markers when measured at the time of diagnosis. Hematopoietic stem cell numbers and cytokine levels are altered by ongoing G-CSF application and may potentially serve as treatment biomarkers for early monitoring of G-CSF treatment efficacy in ALS in future clinical trials

    Botulinum toxin type-A in the prophylactic treatment of medication-overuse headache: a multicenter, double-blind, randomized, placebo-controlled, parallel group study

    Get PDF
    Medication-overuse headache (MOH) represents a severely disabling condition, with a low response to prophylactic treatments. Recently, consistent evidences have emerged in favor of botulinum toxin type-A (onabotulinum toxin A) as prophylactic treatment in chronic migraine. In a 12-week double-blind, parallel group, placebo-controlled study, we tested the efficacy and safety of onabotulinum toxin A as prophylactic treatment for MOH. A total of 68 patients were randomized (1:1) to onabotulinum toxin A (n = 33) or placebo (n = 35) treatment and received 16 intramuscular injections. The primary efficacy end point was mean change from baseline in the frequency of headache days for the 28-day period ending with week 12. No significant differences between onabotulinum toxin A and placebo treatment were detected in the primary (headache days) end point (12.0 vs. 15.9; p = 0.81). A significant reduction was recorded in the secondary end point, mean acute pain drug consumption at 12 weeks in onabotulinum toxin A-treated patients when compared with those with placebo (12.1 vs. 18.0; p = 0.03). When we considered the subgroup of patients with pericranial muscle tenderness, we recorded a significant improvement in those treated with onabotulinum toxin A compared to placebo treated in both primary (headache days) and secondary end points (acute pain drug consumption, days with drug consumption), as well as in pain intensity and disability measures (HIT-6 and MIDAS) at 12 weeks. Onabotulinum toxin A was safe and well tolerated, with few treatment-related adverse events. Few subjects discontinued due to adverse events. Our data identified the presence of pericranial muscle tenderness as predictor of response to onabotulinum toxin A in patients with complicated form of migraine such as MOH, the presence of pericranial muscle tenderness and support it as prophylactic treatment in these patients

    Modeling and Bioinformatics Identify Responders to G-CSF in Patients With Amyotrophic Lateral Sclerosis

    Get PDF
    Objective: Developing an integrative approach to early treatment response classification using survival modeling and bioinformatics with various biomarkers for early assessment of filgrastim (granulocyte colony stimulating factor) treatment effects in amyotrophic lateral sclerosis (ALS) patients. Filgrastim, a hematopoietic growth factor with excellent safety, routinely applied in oncology and stem cell mobilization, had shown preliminary efficacy in ALS. Methods: We conducted individualized long-term filgrastim treatment in 36 ALS patients. The PRO-ACT database, with outcome data from 23 international clinical ALS trials, served as historical control and mathematical reference for survival modeling. Imaging data as well as cytokine and cellular data from stem cell analysis were processed as biomarkers in a non-linear principal component analysis (NLPCA) to identify individual response. Results: Cox proportional hazard and matched-pair analyses revealed a significant survival benefit for filgrastim-treated patients over PRO-ACT comparators. We generated a model for survival estimation based on patients in the PRO-ACT database and then applied the model to filgrastim-treated patients. Model-identified filgrastim responders displayed less functional decline and impressively longer survival than non-responders. Multimodal biomarkers were then analyzed by PCA in the context of model-defined treatment response, allowing identification of subsequent treatment response as early as within 3 months of therapy. Strong treatment response with a median survival of 3.8 years after start of therapy was associated with younger age, increased hematopoietic stem cell mobilization, less aggressive inflammatory cytokine plasma profiles, and preserved pattern of fractional anisotropy as determined by magnetic resonance diffusion tensor imaging (DTI-MRI). Conclusion: Long-term filgrastim is safe, is well-tolerated, and has significant positive effects on disease progression and survival in a small cohort of ALS patients. Developing and applying a model-based biomarker response classification allows use of multimodal biomarker patterns in full potential. This can identify strong individual treatment responders (here: filgrastim) at a very early stage of therapy and may pave the way to an effective individualized treatment option

    Italian guidelines for primary headaches: 2012 revised version

    Get PDF
    The first edition of the Italian diagnostic and therapeutic guidelines for primary headaches in adults was published in J Headache Pain 2(Suppl. 1):105–190 (2001). Ten years later, the guideline committee of the Italian Society for the Study of Headaches (SISC) decided it was time to update therapeutic guidelines. A literature search was carried out on Medline database, and all articles on primary headache treatments in English, German, French and Italian published from February 2001 to December 2011 were taken into account. Only randomized controlled trials (RCT) and meta-analyses were analysed for each drug. If RCT were lacking, open studies and case series were also examined. According to the previous edition, four levels of recommendation were defined on the basis of levels of evidence, scientific strength of evidence and clinical effectiveness. Recommendations for symptomatic and prophylactic treatment of migraine and cluster headache were therefore revised with respect to previous 2001 guidelines and a section was dedicated to non-pharmacological treatment. This article reports a summary of the revised version published in extenso in an Italian version
    corecore