We study formulation and probabilistic interpretation of a simple
general-relativistic hamiltonian quantum system. The system has no unitary
evolution in background time. The quantum theory yields transition
probabilities between measurable quantities (partial observables). These
converge to the classical predictions in the ℏ→0 limit. Our main tool
is the kernel of the projector on the solutions of Wheeler-deWitt equation,
which we analyze in detail. It is a real quantity, which can be seen as a
propagator that propagates "forward" as well as "backward" in a local parameter
time. Individual quantum states, on the other hand, may contain only "forward
propagating" components. The analysis sheds some light on the interpretation of
background independent transition amplitudes in quantum gravity