In fundamental physics, this has been the century of quantum mechanics and
general relativity. It has also been the century of the long search for a
conceptual framework capable of embracing the astonishing features of the world
that have been revealed by these two ``first pieces of a conceptual
revolution''. I discuss the general requirements on the mathematics and some
specific developments towards the construction of such a framework. Examples of
covariant constructions of (simple) generally relativistic quantum field
theories have been obtained as topological quantum field theories, in
nonperturbative zero-dimensional string theory and its higher dimensional
generalizations, and as spin foam models. A canonical construction of a general
relativistic quantum field theory is provided by loop quantum gravity.
Remarkably, all these diverse approaches have turn out to be related,
suggesting an intriguing general picture of general relativistic quantum
physics.Comment: To appear in the Journal of Mathematical Physics 2000 Special Issu