95 research outputs found

    Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling

    Get PDF
    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein1–11 T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central nervous system. Our data identify cellular prion protein as a regulator of cellular immunological homoeostasis and suggest cellular prion protein as a novel potential target for therapeutic immunomodulation

    Mutant SOD1 impairs axonal transport of choline acetyltransferase and acetylcholine release by sequestering KAP3

    Get PDF
    Mutations in the superoxide dismutase 1 (sod1) gene cause familial amyotrophic lateral sclerosis (FALS), likely due to the toxic properties of misfolded mutant SOD1 protein. Here we demonstrated that, starting from the pre-onset stage of FALS, misfolded SOD1 species associates specifically with kinesin-associated protein 3 (KAP3) in the ventral white matter of SOD1G93A-transgenic mouse spinal cord. KAP3 is a kinesin-2 subunit responsible for binding to cargos including choline acetyltransferase (ChAT). Motor axons in SOD1G93A-Tg mice also showed a reduction in ChAT transport from the pre-onset stage. By employing a novel FALS modeling system using NG108-15 cells, we showed that microtubule-dependent release of acetylcholine was significantly impaired by misfolded SOD1 species. Furthermore, such impairment was able to be normalized by KAP3 overexpression. KAP3 was incorporated into SOD1 aggregates in human FALS cases as well. These results suggest that KAP3 sequestration by misfolded SOD1 species and the resultant inhibition of ChAT transport play a role in the dysfunction of ALS

    Endogenous Zinc in Neurological Diseases

    Get PDF
    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized

    The mouse Na+-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D

    Get PDF
    NaSi-1 is a Na+-sulfate cotransporter expressed on the apical membrane of the renal proximal tubule and plays an important role in sulfate reabsorption. To understand the molecular mechanisms that mediate the regulation of NaSi-1, we have isolated and characterized the mouse NaSi-1 cDNA (mNaSi-1), gene (Nas1), and promoter region and determined Nas1 chromosomal localization. The mNaSi-1 cDNA encodes a protein of 594 amino acids with 13 putative transmembrane segments, inducing high affinity Na+-dependent transport of sulfate in Xenopus oocytes. Three different mNaSi-1 transcripts derived from alternative polyadenylation and splicing were identified in kidney and intestine. The Nas1 gene is a single copy gene comprising 15 exons spread over 75 kilobase pairs that maps to mouse chromosome 6. Transcription initiation occurs from a single site, 29 base pairs downstream to a TATA box-like sequence. The promoter is AT-rich (61%), contains a number of well characterized cis-acting elements, and can drive basal transcriptional activity in opossum kidney cells but not in COS-1 or NIH3T3 cells. We demonstrated that 1,25-dihydroxyvitamin D3 stimulated the transcriptional activity of the Nas1 promoter in transiently transfected opossum kidney cells. This study represents the first characterization of the genomic organization of a Na+-sulfate cotransporter gene. It also provides the basis for a detailed analysis of Nas1 gene regulation and the tools required for assessing Nas1 role in sulfate homeostasis using targeted gene manipulation in mice

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    BOOK REVIEWS

    No full text
    Volume: 15Start Page: 90End Page: 9

    BOOK REVIEWS

    No full text
    Volume: 15Start Page: 70End Page: 7

    BOOK NOTICES

    No full text
    Volume: 15Start Page: 404End Page: 40

    BOOK NOTICES

    No full text
    Volume: 15Start Page: 538End Page: 53
    corecore