26 research outputs found

    Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: a multi-site study

    Get PDF
    The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge, with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion weighted and perfusion imaging are commonly used to aid the non-invasive diagnosis of children's brain tumours, but are usually evaluated by expert qualitative review. Quantitative studies are mainly single centre and single modality. The aim of this work was to combine multi-centre diffusion and perfusion imaging, with machine learning, to develop machine learning based classifiers to discriminate between three common paediatric tumour types. The results show that diffusion and perfusion weighted imaging of both the tumour and whole brain provide significant features which differ between tumour types, and that combining these features gives the optimal machine learning classifier with >80% predictive precision. This work represents a step forward to aid in the non-invasive diagnosis of paediatric brain tumours, using advanced clinical imaging

    Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups

    Get PDF
    BACKGROUND: Tumour classification, based on histopathology or molecular pathology, is of value to predict tumour behaviour and to select appropriate treatment. In retinoblastoma, pathology information is not available at diagnosis and only exists for enucleated tumours. Alternative methods of tumour classification, using noninvasive techniques such as magnetic resonance spectroscopy, are urgently required to guide treatment decisions at the time of diagnosis. METHODS: High-resolution magic-angle spinning magnetic resonance spectroscopy (HR-MAS MRS) was undertaken on enucleated retinoblastomas. Principal component analysis and cluster analysis of the HR-MAS MRS data was used to identify tumour subgroups. Individual metabolite concentrations were determined and were correlated with histopathological risk factors for each group. RESULTS: Multivariate analysis identified three metabolic subgroups of retinoblastoma, with the most discriminatory metabolites being taurine, hypotaurine, total-choline and creatine. Metabolite concentrations correlated with specific histopathological features: taurine was correlated with differentiation, total-choline and phosphocholine with retrolaminar optic nerve invasion, and total lipids with necrosis. CONCLUSIONS: We have demonstrated that a metabolite-based classification of retinoblastoma can be obtained using ex vivo magnetic resonance spectroscopy, and that the subgroups identified correlate with histopathological features. This result justifies future studies to validate the clinical relevance of these subgroups and highlights the potential of in vivo MRS as a noninvasive diagnostic tool for retinoblastoma patient stratification

    Texture analysis of T1- and T2-weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumours in children

    Get PDF
    Brain tumours are the most common solid tumours in children, representing 20% of all cancers. The most frequent posterior fossa tumours are medulloblastomas, pilocytic astrocytomas and ependymomas. Texture analysis (TA) of MR images can be used to support the diagnosis of these tumours by providing additional quantitative information. MaZda software was used to perform TA on T1- and T2-weighted images of children with pilocytic astrocytomas, medulloblastomas and ependymomas of the posterior fossa, who had MRI at Birmingham Children's Hospital prior to treatment. The region of interest was selected on three slices per patient in Image J, using thresholding and manual outlining. TA produced 279 features, which were reduced using principal component analysis (PCA). The principal components (PCs) explaining 95% of the variance were used in a linear discriminant analysis (LDA) and a probabilistic neural network (PNN) to classify the cases, using DTREG statistics software. PCA of texture features from both T1- and T2-weighted images yielded 13 PCs to explain >95% of the variance. The PNN classifier for T1-weighted images achieved 100% accuracy on training the data and 90% on leave-one-out cross-validation (LOOCV); for T2-weighted images, the accuracy was 100% on training the data and 93.3% on LOOCV. A PNN classifier with T1 and T2 PCs achieved 100% accuracy on training the data and 85.8% on LOOCV. LDA classification accuracies were noticeably poorer. The features found to hold the highest discriminating potential were all co-occurrence matrix derived, where adjacent pixels had highly correlated intensities. This study shows that TA can be performed on standard T1- and T2-weighted images of childhood posterior fossa tumours using readily available software to provide high diagnostic accuracy. Discriminatory features do not correspond to those used in the clinical interpretation of the images and therefore provide novel tumour information

    1H magnetic resonance spectroscopy in the diagnosis of paediatric low grade brain tumours

    No full text
    Introduction: Low grade gliomas are the commonest brain tumours in children but present in a myriad of ways, each with its own treatment challenges. Conventional MRI scans play an important role in their management but have limited ability to identify likely clinical behaviour. The aim of this study is to investigate 1H magnetic resonance spectroscopy (MRS) as a method for detecting differences between the various low grade gliomas and related tumours in children. Patients and methods: Short echo time single voxel 1H MRS at 1.5 or 3.0 T was performed prior to treatment on children with low grade brain tumours at two centres and five MR scanners, 69 cases had data which passed quality control. MRS data was processed using LCModel to give mean spectra and metabolite concentrations which were compared using T-tests, ANOVA, Receiver Operator Characteristic curves and logistic regression in SPSS. Results: Significant differences were found in concentrations of key metabolites between glioneuronal and glial tumours (T-test p < 0.05) and between most of the individual histological subtypes of low grade gliomas. The discriminatory metabolites identified, such as choline and myoinositol, are known tumour biomarkers. In the set of pilocytic astrocytomas and unbiopsied optic pathway gliomas, significant differences (p < 0.05, ANOVA) were found in metabolite profiles of tumours depending on location and patient neurofibromatosis type 1 status. Logistic regression analyses yielded equations which could be used to assess the probability of a tumour being of a specific type. Conclusions: MRS can detect subtle differences between low grade brain tumours in children and should form part of the clinical assessment of these tumours

    Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours

    No full text
    The aim of this study was to assess the efficacy of three‐dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre‐contrast T1‐ and T2‐weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first‐, second‐ and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave‐one‐out cross‐validation (LOOCV) approach, as well as stratified 10‐fold cross‐validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D‐trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1‐ and T2‐weighted images can improve the diagnostic classification of childhood brain tumours. Long‐term benefits of accurate, yet non‐invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used
    corecore