6 research outputs found

    Texture analysis of multimodal magnetic resonance images in support of diagnostic classification of childhood brain tumours

    Get PDF
    Primary brain tumours are recognised as the most common form of solid tumours in children, with pilocytic astrocytoma, medulloblastoma and ependymoma being found most frequently. Despite their high mortality rate, early detection can be facilitated through the use of Magnetic Resonance Imaging (MRI), which is the preferred scanning technique for paediatric patients. MRI offers a variety of imaging sequences through structural and functional imaging, as well as providing complementary tissue information. However visual examination of MR images provides limited ability to characterise distinct histological types of brain tumours. In order to improve diagnostic classification, we explore the use of a computer-aided system based on texture analysis (TA) methods. TA has been applied on conventional MRI but has been less commonly studied on diffusion MRI of brain-related pathology. Furthermore, the combination of textural features derived from both imaging approaches has not yet been widely studied. In this thesis, the aim of the research is to investigate TA based on multi-centre multimodal MRI, in order to provide more comprehensive information and develop an automated processing framework for the classification of childhood brain tumours

    Automated processing pipeline for texture analysis of childhood brain tumours based on multimodal magnetic resonance imaging

    No full text
    Primary brain tumours are the most common solid tumours found in children and are an important cause of morbidity and mortality. Magnetic resonance imaging (MRI) is commonly used for non-invasive early-detection, diagnosis, delineation of tumours for treatment planning and assessment of post treatment changes. Different MRI modalities provide complementary contrast of tumour tissues, which can have varying degrees of heterogeneity and diffusivity in different tumour types. A variety of texture analysis methods have been shown to reveal tumour histological types. It is hypothesized that textural features, based on conventional and diffusion MRI modalities, would differentiate the characteristics of tumours. Tumour extraction is also a significant procedure needed to obtain a true tumour region. Semi-automated segmentation methods were applied, in comparison with the gold standard of manual segmentation by an expert, in order to speed up a manual segmentation approach and reduce any bias effects. In this study, we present an automatic processing pipeline for the characterization of brain tumours, based on texture analysis. We apply this to a multi-centre dataset of paediatric brain tumours and investigate the accuracy of tumour classification, based on textural features of diffusion and conventional MR images

    Magnetic resonance texture analysis : optimal feature selection in classifying child brain tumors

    No full text
    Textural feature based classification has shown that magnetic resonance images can characterize histological brain tumor types. Feature selection is an important process to acquire a robust textural feature subset and enhance classification rate. This work investigates two different feature selection techniques; principal component analysis (PCA), and the combination of max-relevance and min-redundancy (mRMR) and feedforward selection. We validated these techniques based on a multi-center dataset of pediatric brain tumor types; medulloblastoma, pilocytic astrocytoma and ependymoma, and investigated the accuracy of tumor classification, based on textural features of diffusion and conventional MR images
    corecore