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ABSTRACT 

 

Aims: Metabolite levels can be measured non-invasively using in vivo 1H Magnetic Resonance 

Spectroscopy (MRS). These tumour metabolite profiles are highly characteristic for tumour type in 

childhood brain tumours, however the relationship between metabolite values and conventional 

histopathological characteristics has not yet been fully established. This study systematically tests 

the relationship between metabolite levels detected by MRS and specific histological features in a 

range of paediatric brain tumours. 

Methods: Single voxel MRS was performed routinely in children with brain tumours along with 

the clinical imaging prior to treatment. Metabolites were quantified using LCModel. Histological 

features were assessed semi quantitatively for 27 children on H&E and immunostained slides, 

blind to the metabolite values. Statistical analysis included two-tailed independent samples t-tests 

and two-tailed Spearman-rank correlation tests.  

Results: Ki67, cellular atypia and mitosis correlated positively with choline metabolites, 

phosphocholine in particular. Apoptosis and necrosis were both associated with lipid levels, with 

the relationship dependant on the use of long or short echo time MRS acquisitions.  Neuronal 

components correlated negatively and glial components positively with N-acetyl-aspartate. Glial 

components correlated positively with myoinositol.  

Conclusion: Metabolite levels in children’s brain tumours measured by MRS are closely 

associated with key histological features routinely assessed by histopathologists in the diagnostic 

process. This further elucidates our understanding of this important non-invasive diagnostic tool 

and strengthens our understanding of the relationship between metabolites and histological 

features.  

 

Keywords: Magnetic Resonance Spectroscopy; paediatric brain neoplasms; histology, ki67, 

necrosis, apoptosis, metabolites, lipids 
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INTRODUCTION  

 

Conventional Magnetic Resonance (MRI) provides structural information on tumour location and 

properties, however it provides little information on the biological properties of the tumour. 

Increasingly, MR methods are being developed that provide complementary biological information 

in additional to standard structural information. 1H Magnetic Resonance Spectroscopy (MRS) is a 

technique that measures tumour metabolite profiles and these have been shown to provide a 

powerful non-invasive characterization of children’s brain tumours [1-4]. Clinically, tumour type is 

currently categorized by histopathology [5], which is the acknowledged standard against which 

non-invasive techniques are compared [1]. Thus, there is a need to determine how metabolite 

biomarkers obtained using MRS relate to established histopathological characteristics [6], and to 

further understand the relationship between non invasively determined metabolite profiles and 

tumour biology. 

 

In vivo MRS is increasing being used as a non-invasive method of measuring metabolites for 

disease monitoring in many brain disorders including neurodegenerative diseases such as 

Alzheimer’s and Parkinson’s disease, traumatic brain injury, psychiatric disorders, and 

neurooncology [2,7-12]. A growing number of studies are investigating the value of MRS for both 

diagnostic classification and post-treatment monitoring in brain tumours [4,13-16]. However, 

whilst some studies have correlated clinical information such as tumour grade with MRS features, 

there are relatively few studies that have directly examined the relationship between in vivo 

metabolite markers and traditional histopathological measures [17-21]. Even fewer studies have 

been undertaken in paediatric brain tumour patients [22,23]. There is also an increasing trend in 

clinical studies towards the use of short echo time MRS data which can measure a larger number 

of metabolites, increasing the information available and allowing detailed laboratory findings to be 

investigated [24-26].  

 

The most commonly investigated metabolites in the in vivo MRS of brain tumours are N-acetyl 

aspartic acid (NAA), total choline, creatine, lipids, myoinositol, glycine, taurine, glutamate and 

glutamine [4,26]. Perhaps the most evidence for an association between MRS and histology is for 
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the choline metabolites which have been linked to cell density [27,28], Ki67 proliferation index 

[18,19] and nuclear shape [17,27], as well as being suggested as a marker of rapid cellular 

proliferation and tumour aggressiveness [23,29,30]. There is also a substantial literature on lipid 

levels detected by MRS in tumours. Lipids detected by MRS reside in intracytoplasmic lipid 

droplets which increase greatly in apoptosis and necrosis [31]. Very high lipid levels are detected 

by MRS in necrotic tumours and this has been used as an indicator of grade in adults with 

gliomas [31,32]. However, extensive necrosis is rarer in childhood brain tumours and the 

association with MRS detectable lipids has not yet been established fully. MRS lipids have also 

been linked to Ki67 although this is most likely to be through an association between necrosis 

and grade [27].  

 

Myoinositol, which can be detected reliably by short echo time MRS, is a cerebral osmolyte and 

has been proposed as a marker of astrocytes and gliosis [26,33]. Elevated myoinositol has also 

been shown to distinguish between grade in astrocytoma [34,35]. Tumour cells in astrocytic 

neoplasms stain intensely with antibodies to GFAP [36] however myoinositol in tumours has not 

yet been linked convincingly to this. Glycine has been detected in paediatric brain tumours in vivo 

by Davies et al.[37] and shown to be significantly higher in high grade vs. low grade tumours. N-

acetyl-aspartate (NAA) is commonly regarded as a neuronal marker as it has been found to be 

preferentially highly expressed in neurons rather than glial cells [38]. In addition, in vivo MRS of 

normal brain displays a prominent NAA peak, whilst tumours display far less [21,26,39,40]. 

However, significant amounts of NAA are found in pilocytic astrocytomas,[40] and its origin in 

these tumours remains controversial. In diffuse tumours it may arise from normal brain.  

 

Despite the increasing use of MRS as a valuable clinical diagnostic and prognostic tool in brain 

tumours, there are still very few studies that have investigated the specific relationships between 

metabolites detected with in vivo MRS and traditional histopathological features. As metabolites 

have been proposed as potential biomarkers, further investigation of their relationship to 

traditional histological measures is essential for the validation of their biomarker value. We have 

examined the relationship between key metabolites in vivo and common histopathological 

features in a range of paediatric brain tumours at both long and short echo time. The increasing 
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emergence of robust clinical in vivo MRS as an important diagnostic and prognostic technique 

makes this study timely, particularly for paediatric patients where non-invasive methods are highly 

valued. 

 

PATIENTS & METHODS 

 

Magnetic Resonance Spectroscopy (MRS) 

MRS was performed routinely on a 1.5T MRI Scanner (Siemens Symphony or General Electric 

Signa Excite) in children with brain tumours combined with their clinical imaging at Birmingham 

Children’s Hospital (BCH) from 2003 to 2009.  MRS was carried out prior to any treatment 

(except stereotactic biopsy) and all analysis was undertaken retrospectively. Informed parental 

consent was obtained for the use of patient data for research purposes and ethical approval for 

the study was granted by the local research ethics committee (Derby NRES Committee). The 

acquisition protocol involved using point-resolved spectroscopy (PRESS) localization for a single 

voxel. The voxel volume was either 3.375cm3 or 8cm3 according to the size of the tumour.  A TE 

of 30ms was used for all patients. Some patients also had long echo time (TE=135) MRS 

acquired (n=8). The repetition time was 1500ms and 128 repetitions were used for 8cm3 voxels 

while 256 repetitions were used for 3.375 cm3 voxels. A water unsuppressed MRS was acquired 

for eddy current correction and as a concentration reference. Raw MRS signal data and voxel 

position images were transferred to a dedicated computer network. The raw MRS signal was 

processed using LCModel software (Version 6.2.0)[41], which determines metabolite 

concentrations by fitting the data to a linear combination of basis functions formed from individual 

metabolite spectra. The unsupressed water signal was used as a concentration reference. 

Concentration values were calculated assuming a tissue water concentration of that for white 

matter. Lipid concentrations are reported per proton. An example showing metabolite fitting in 

LCModel in a brain tumour case from this cohort is presented in figure 1. Cramer-Rao Lower 

Bounds (CRLB) are also determined by LCModel, and these indicate the accuracy with which the 

metabolite concentrations have been estimated. Metabolites and lipids with CRLB less 30% were 

accepted for accurate quantification. 
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The spectra were reviewed individually to assess quality, and the ones failing the criteria set were 

excluded from the analysis. These criteria included signal-to-noise ratio (S/N) ≥ 6 and full-width 

half-maximum (FWHM) ≤ 0.15ppm. Baseline stability, good phasing, adequate water suppression 

and absence of artefacts were assessed by inspection. The voxel positioning was also reviewed 

to ensure the voxel was positioned over tumour and did not include large amounts of normal 

brain or cyst. In addition, voxels needed to be at least 3mm away from lipid-containing bone and 

scalp.    

 

Segmentation 

For patients with significant amounts of cyst or ventricle in the voxel, segmentation of the T1 (pre 

and post contrast) and T2 MR images was performed and the metabolite concentrations adjusted 

accordingly (corrected metabolite concentration = concentration in voxel/active tumour fraction in 

voxel). The concentration of lactate was not altered in the three patients with cyst in the voxel (the 

tumour cysts contain lactate), but was altered for the patient with ventricle in the voxel.   

 

Histological review 

Retrospective histological review of H&E stained sections obtained at the time of biopsy or 

tumour resection for each patient was undertaken jointly between EO and MAB, blind to the MRS 

results. A single H&E stained section was prepared for each paraffin block. The slides assessed 

were representative of the tumour diagnosis and grade for all cases included in the study. The 

assessment was semi-quantitative, with each feature assigned a category. The H&E stained 

slides were assessed (with the scoring categories detailed in Table 1) for architecture and 

cellularity, presence of cellular atypia, mitosis, apoptosis and necrosis. Architecture was defined 

as tumour tissue with a structure that was either solid, diffuse, cystic or a combination of each. 

Atypia denotes the degree of abnormality within a tumour based on degree of alteration of shape 

and size of cells and nuclei compared to normal cells. Mitotic figures were defined as darkly 

stained elongated structures indicating chromosomes condensing and duplicating. Apoptotic cells 

were identified as cells with condensing and fragmenting chromatin (stained blue), often also with 

an irregular shape and size, as described previously[42]. Necrosis was scored as the presence or 

absence of tissue areas with cell shrinkage and pronominally eosinophilic stain (stained pink) 
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indicating DNA breakdown from dead or dying cells. Also recorded was the presence of 

neoplastic glial elements, reactive glial elements, entrapped neuronal elements, lesional neuronal 

elements (rosetting), and vascularity. Ki67, GFAP and synaptophysin immunohistochemical 

stains were also reviewed where available, the number of patients where this information was not 

available is detailed in table 1.  

 

Statistical analysis between metabolite levels and histopathological features was undertaken in 

SPSS v.17.0, using two-tailed independent samples t-tests and Spearman-rank correlation tests. 

P-values of <0.05 were considered statistically significant. 

 

 

RESULTS 

 

Twenty-seven children with brain tumours were included in the study. The breakdown by tumour 

type (according to WHO 2007)[5] was: 9 medulloblastomas,  5 pilocytic astrocytomas, 3 

ependymomas, 2 atypical teratoid/rhabdoid tumours, 2 glioblastoma, 2 diffuse astrocytomas, 2 

dysembryoplastic neuroepithelial tumours, 1 pineoblastoma, 1 gliomatosis cerebri. The categories 

of all histopathological variables and the respective number of patients in each are shown in 

Table 1. Representative microphotographs of the key histopathological parameters assessed are 

shown in figure 2.  Statistically significant correlations are summarized in Table 2.  

 

Tumour proliferation measured by the percentage of Ki67 nuclear staining correlated positively 

with phosphocholine (PCh) and glycerophosphocholine+phosphocholine (GPC+PCh, fig. 3c) but 

not GPC. Apoptosis correlated positively with lipids+macromolecules (fig. 2) and taurine (Tau, fig. 

3b), p<0.02.  For the cases where necrosis was absent (n=18) statistically significant positive 

correlations were found between apoptosis and lipids/macromolecules at 0.9ppm (rs=0.645), 

1.3ppm (rs=0.656), 2.0ppm (rs=0.718) and 1.3/0.9 ppm (rs=0.667), p<0.005. Taurine was also 

significantly correlated with apoptosis in the non-necrotic patients,  rs = 0.668, p = 0.002. 
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A  comparison between the necrotic (n=8) and non-necrotic tumours (n=18), found no statistically 

significant differences with respect to the amount of lipids+macromolecules at 0.9, 1.3 and 

2.0ppm or lactate. However, long TE total lipids+macromolecules were found to be significantly 

higher in the group with necrosis (n=2) compared to the group without necrosis (n=6), p<0.05. 

Lipids at 1.3/0.9 were not significantly different between these groups. Apoptosis did not 

significantly correlate with lipids/macromolecules at long TE. 

 

There was a significant positive correlation between atypia and PCh, GPC+PCh and 

lipids+macromolecules. A scatter plot of atypia vs. lipids+macromolecules at 2.0ppm is shown in 

fig. 3d. Mitosis also correlated positively with PCh, and lipids+macromolecules, but not with GPC 

or GPC+PCh. Lesional neuronal elements correlated negatively with N-Acetyl aspartate (NAA) 

and N-Acetyl aspartate+N-Acetylaspartylglutamate (NAA+NAAG). No significant difference in 

NAA or NAA+NAAG between patients with and without entrapped neuronal elements was found. 

Neoplastic glial elements correlated positively with myoinositol (mIns, fig. 3e), NAA, NAA+NAAG, 

and negatively with glycine (Gly, fig. 3f), but not with mIns+Gly together. The concentrations of 

mIns, Gly, mIns+Gly, NAA and NAA+NAAG were not significantly different between groups where 

reactive glial elements were present (n=15) or absent (n=12), p>0.07. GFAP correlated 

negatively with Gly, p< 0.003, but there was no significant correlation with mIns.   

 

The vascularity and architecture of the tumours did not significantly correlate with lactate, and 

synaptophysin staining was not significantly correlated with NAA and NAA+NAAG. However, it 

should be noted that synaptophysin staining was not performed on 16 patients as it is not 

undertaken in tumours that are expected to be negative e.g. in glial tumours. 

 

There were also several significant correlations between tumour grade and metabolite 

concentration, in particular for PCh, lipids+macromolecules, creatine, taurine, and glycine which 

were all positively associated with increasing grade (Table 3). In contrast, NAA+NAAG was the 

only metabolite with a significant negative association with increased grade, p < 0.001 (Table 3). 
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DISCUSSION  

 

MRS has seen increasing use as a non-invasive tool for the characterization and monitoring of 

brain tumours. Although many studies have reported the relationship between metabolites and 

diagnostic groups, tumour aggressiveness, and prognosis, few have addressed the relationship 

with histopathological features routinely assessed after biopsy or resection. In particular, there is 

a lack of studies systematically comparing the set of major morphological features assessed in 

routine histopathology with MRS acquired in a manner which maximizes the number of 

metabolites quantified. This study has found important associations between metabolites 

detected by in vivo MRS in paediatric brain tumours and key histological features including 

apoptosis, necrosis, mitosis, atypia, glial and neuronal components.  

 

Total choline was found to correlate positively with Ki67. Choline containing metabolites are 

involved in membrane synthesis and have a role in membrane turnover[30]. Total choline 

elevation is thought to be a marker of malignant transformation and rapid cellular proliferation as 

a result of increased mitosis, leading to an abnormal increase in metabolism [17,18,43,44]. 

Previous studies have identified a correlation between Ki67 and total choline in a variety of 

tumours including grade II-IV astrocytomas in adults [19]; medulloblastomas in children [23,45] 

and homogeneous, but not heterogeneous, gliomas in adults [18]. Two other studies in adult 

gliomas did not find a correlation between total choline and Ki67 [27,28]. The reason for these 

conflicting results has been postulated to be that phosphocholine and glycerophosphocholine 

both contribute to total choline but it is the ratio phosphocholine/glycerophosphocholine which is 

related to tumour growth [46,47]. In the current study, a positive correlation was found between 

Ki67 and phosphocholine but not glycerophosphocholine, supporting this assertion. In addition, 

both atypia and mitosis, also features of tumour aggressiveness, had significant correlations with 

phosphocholine, although only atypia correlated with total choline. The determination of PC and 

GPC by 1H MRS at 1.5T in vivo is far less robust than for tCho and results for these metabolites 

should be interpreted with caution. There is some evidence that values for PC and GPC from 1H 

MRS at 1.5T reflect those seen in these tumours [1,47,48] and so we have included them here for 

completeness. Recent evidence has began to link underlying patterns of gene expression to in 
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vivo and ex vivo choline metabolism in breast cancer sub-groups [49,50]. This further emphasises 

the importance of the choline metabolites as biomarkers in all tumours.  Our work suggests that 

choline metabolism may play an important role in cellular proliferation and membrane turnover of 

paediatric brain tumours, thus warranting continued investigation.  

 

Atypia and mitosis were found to have significant correlations with lipids in the current study. 

Lipids measured by MRS are known to be higher in more aggressive tumours and associated 

with poor survival [14,51]. Lipids have also been associated with apoptosis [31,52,53], an active 

process of programmed cell death during which large intracellular lipid droplets accumulate that 

are detected by MRS [54,55]. High lipids were associated with necrosis as well as apoptosis and 

this association was dependant on the MRS technique used to acquire the data. Lipids measured 

by short echo time MRS correlated with apoptosis whereas lipid concentrations measured by long 

echo time MRS were higher in the necrotic tumours. Short echo time MRS is very sensitive for 

the detection of lipids and it is likely that this is important in detecting the signals from the small 

lipid droplets which experience some motion restriction of the fatty acid chains [54]. The less 

sensitive long echo time MRS is well suited to detecting the large levels of more mobile lipid 

associated with necrosis. Prior associations between lipid and necrosis have largely been carried 

out with long echo time data [31,56]. The current findings suggest that altering MRS technique 

between short and long echo time sequences may be useful for elucidating the relative 

contribution of lipid arising from apoptosis and necrosis respectively, although further work will be 

required to conclusively determine this. 

 

Taurine was also found to be positively correlated with apoptosis although there is less 

information in the literature regarding this association. Ex vivo tissue metabolite analysis and 

histopathological analysis performed by Opstad et al. found taurine to significantly correlate with 

apoptotic cell density in necrotic and non-necrotic biopsies of adult gliomas [57]. In a model of 

apoptotic death in cultured cerebellar granule neurons, taurine was found to be implicated in cell 

shrinkage during apoptosis [58]. In further support of this, Lang et al.,[59] loaded Jurkat human T-

lymphocytes with [3H]taurine and were able to induce apoptotic cell death. The resulting taurine 
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release coincided and presumably contributed to the cell shrinkage typical of apoptotic death, and 

preceded DNA fragmentation.  

 

Although NAA is commonly regarded as a putative neural marker and a measure of neural 

density and function, its origin in tumours is less certain with prior evidence having found  

prominent NAA peaks in tumours of astrocytic origin[19,45,60]. Interestingly, we found a 

significant positive correlation between NAA and neoplastic glial elements and a significant 

negative correlation between NAA and lesional neuronal elements. As the NAA was most 

prominent in the pilocytic astrocytomas, this result supports the assertion that NAA seen in these 

tumours arises from tumour tissue, rather than from neurons entrapped within the tumour [61,62]. 

Furthermore, scrutiny of the voxel positions confirms that the NAA cannot be explained by normal 

appearing brain from within or close to the voxel. The origin of NAA in astrocytoma cells may be 

linked to O-2A progenitor cells which contain NAA [40,63]. These cells are precursors of type-2 

astrocytes, and some low grade astrocytomas express antigens consistent with type-2 astrocytic 

lineage [64].  

 

Myoinositol (mIns) was found to correlate positively with neoplastic glial elements, consistent with 

studies which have shown mIns to be high in glial tumours and a potential astrocytic marker 

[9,34,35,45,60]. There was no correlation between mIns and GFAP expression, although they are 

both considered to be markers of glial differentiation. This is in agreement with Oz et al [65]., who 

investigated GFAP levels in the CSF of patients with spinocerebellar ataxia type 1 and their 

relationship to metabolites from different brain locations. The lack of correlation between GFAP 

and mIns is perhaps unsurprising given that GFAP histological expression can be highly variable 

in astrocytic tumours [66]. 

 

In this study lactate was not found to correlate with tumour architecture, necrosis or vascularity. 

Although some studies have reported an association between lactate and tumour necrosis, 

others have detected very little correlation between lactate and histological tumour properties 

[21,44,67-69]. It is likely that lactate detected in vivo in brain tumours is a measure of abnormal 

metabolic activity, and not exclusively linked to tumour necrosis. The significant association 
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between between tumour grade and individual metabolites such as total choline, phosphocholine, 

lipids and macromolecules, glycine, and taurine is also consistent with prior work, with elevated 

levels of these metabolites previously reported in high grade brain tumours[14,37,45,47,70]. An 

association between increased NAA in low grade glial tumours has also been previously 

indentified [71].  

 

As metabolite profiles are increasingly being used to both classify and monitor disease 

progression in paediatric brain tumours, it is important to examine the association between such 

metabolites and traditional histological markers. This will aid in the interpretation of MRS 

metabolite measures in tumours, as well as increasing our understanding of the biological 

underpinnings of metabolites as potential biomarkers of disease. Metabolites also add additional 

information beyond that associated with diagnosis alone, including prognostic information useful 

for risk stratification, monitoring relapsed tumours which are rarely re-biopsied and examined 

histologically, and for distinguishing relapse from treatment related effects which would otherwise 

be very difficult using conventional MRI. Furthering our understanding of the relationship between 

histology and metabolites in resected brain tumours will also aid in the interpretation of MRS in 

cases where biopsy and/or resection is not routinely undertaken. 

 

In summary, we have tested the association between metabolite levels determined by in vivo 

MRS and routinely assessed histopathological features in paediatric brain tumours. The results 

confirm previous findings from in vitro and animal studies. Previous in vivo clinical studies have 

been restricted to the investigation of a small number of metabolites investigated in gliomas in 

adults. In vivo MRS is a powerful non-invasive method for the characterization of paediatric brain 

tumours and gives information which correlates well with important histopathological features 

such as proliferation index, apoptosis and necrosis. Larger multicentre studies in the paediatric 

population will enable these correlations to be tested in specific tumour types.  
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Table 1. Histopathological categories and respective number of patients (short TE studies)  
 

Histopathological 

feature 
Categories Number of patients 

Ki67 

<1% 7 
1-2% 2 

4-10% 1 
>10% 14 

Not performed 3 

Apoptosis 

None 4 
Very low or low 10 

Moderate 7 
Moderate to high or high 6 

Necrosis Present 9 (1 very localised) 
Absent 18 

Cellular Atypia 

None 3 
Very low or low 8 

Low to moderate or low focally moderate or moderate 8 
High 8 

Mitosis 

None 7 
Very low or low 7 

Moderate 7 
High 5 

Indeterminate 1 (removed from analysis) 

Lesional Neuronal 
Elements 

None 13 
Focally PNET-like 3 
Neuronal Rosettes 4 

Widespread PNET-like 7 
Entrapped Neuronal 

Elements 
Present 3 
Absent 24 

Neoplastic Glial 
Elements 

None 10 
Focally or entrapped 2 
Predominantly glial 15 

Reactive Glial 
Elements 

Present 15 
Absent 12 

GFAP staining 

Negative 2 
Very focal or reactive glial 6 

<10% 2 
10-50% 4 
>50% 11 

Not performed 2 

Vascularity 

Low 8 
Moderate 14 

High 3 
Indeterminate 2 

Architecture 

Solid 15 
Solid diffuse 6 

Solid occasionally microcystic or microcystic 3 
Half solid half cystic 3 

Synaptophysin 
staining 

Negative 1 
Scattered positive cells 1 

Focally positive 3 
Positive 6 

Not performed 16 
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Table 2. Summary of statistically significant correlations between histopathological features 

and metabolites detected by 1H MRS.  

 

Feature Metabolite Correlation/t-test* p-value 

Ki67  
PCh +ve 0.031 

GPC+PCh +ve 0.006 

Apoptosis  

Lip+MM  at 0.9, 1.3, 2.0, 
1.3/0.9 ppm +ve 0.001, 0.003, 

0.005, 0.001 

Tau +ve 0.014 

Necrosis  Long TE Lip+MM at 0.9, 
1.3, 2.0 ppm 

Higher - group with 
necrosis 0.002, 0.002, 0.004 

Cellular atypia  

PCh +ve 0.013 

GPC+PCh +ve 0.014 

Lip+MM at 0.9, 1.3, 2.0 ppm +ve 0.023, 0.016, 0.002 

Mitosis  
PCh +ve 0.004 

Lip+MM at 0.9, 1.3, 2.0 ppm +ve 0.006, 0.012, 0.001 

Lesional neuronal 
elements  NAA, NAA+NAAG -ve <0.0001 

Neoplastic glial 
elements  

mIns +ve 0.024 

Gly -ve 0.001 

NAA, NAA+NAAG +ve <0.0001 

GFAP  Gly -ve 0.003 

 
*  “+ve” refers to a positive correlation and “-ve” refers to a negative correlation 
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Table 3. Summary of statistically significant correlations between metabolites detected by 1H 

MRS and tumour grade. 

 

Metabolite 
Spearmans 
correlation 
coefficient 

Direction of 
correlation* p-value 

Creatine 0.397 +ve 0.05 

PCh 0.571 +ve 0.001 

GPC+PCh 0.626 +ve 0.001 

Gly 0.566 +ve 0.001 

Lip+MM at 0.9, 1.3, 2.0 
ppm 0.617 +ve 0.001 

Lip 1.3/0.9 0.43 +ve 0.05 

Tau 0.39 +ve 0.05 

NAA+NAAG 0.636 -ve 0.001 

 
Low grade 1, n = 8; Intermediate grade 2/3, n = 6; high grade 4, n = 13 
*  “+ve” refers to a positive correlation and “-ve” refers to a negative correlation 
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Figure Legends 

 

Figure 1. Example MRS spectra of a medulloblastoma tumour acquired at short (TE=30) echo 

time. A, B= Conventional T1 weighted MRI images showing tumour in the cerebellum. The 

position of the voxel for acquiring MRS data is indicated by the white box. C= Corresponding 

MRS spectra with key metabolites identified and fitted in LC model.  Abbreviations are labelled as 

follows: Gly (glycine), mIns (myoinositol), Tau (taurine), MM (macromolecules), ppm(parts per 

million).  

 

Figure 2. Representative microphotographs illustrating pathological parameters assessed 

semiquantitatively. A= Classical medulloblastoma (H&E, x40 original magnification) showing a 

high cellularity and high levels of apoptosis (*), B= Pilocytic astrocytoma (H&E, original 

magnification x20) showing a low cellularity, and a partly solid, partly cystic (*) architecture, C= 

Classical medulloblastoma with synaptophysin widely and strongly expressed in tumour cells. 

Synaptophysin is a specific marker for tissue derived from neural and neuroendocrine tissue, and 

positivity is indicated by brown labelling within cell cytoplasm and membranes. D= Classical 

medulloblastoma with high Ki67 labeling (>50% positive). Positive Ki67 staining is represented by 

the brown nuclear staining which is a specific marker of proliferating cells. E= Pilocytic 

astrocytoma showing strong staining with GFAP, an intermediate filament protein that labels 

astrocytic and some ependymal cells within the central nervous system. GFAP expression is 

indicated by brown membranous and cytoplasmic staining of tissue. 

 

Figure 3.  Plots showing mean metabolite concentration (mM) across categories for each 

histological feature,  A= mean macromolecules (MM) 09+Lip09 vs Apoptosis, B= mean Tau vs 

apoptosis, C= mean GPC+PCh vs Ki67, D= mean MM20+Lip20 vs Atypia, E= mean mI vs 

Neoplastic glial elements, F= mean Gly vs Neoplastic glial elements. MM09+Lip09=lipids and 

macromolecules at 0.9ppm, Tau=taurine, GPC=glycerophosphocholine, PCh=phosphocholine, 

MM20+Lip20= lipids and macromolecules at 2.0ppm, mI=myo-inositol, Gly=glycine. Error bars 

represent +/- 1 standard error.  
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