46 research outputs found

    Terrestrial ages and exposure ages of Antarctic H-chondrites from Frontier Mountain, North Victoria Land

    Get PDF
    We measured the isotopic compositions and concentrations of He, Ne and Ar as well as the concentrations of cosmogenic ^Be, ^Al and ^Cl in 26 H-chondrites and 1 L-chondrite from a meteorite stranding area near the Frontier Mountain Range, East Antarctica. Based on the radionuclide concentrations and the noble gas signatures we conclude the 26 H-chondrite samples represent at least 13 different falls. The exposure ages of most H-chondrites are in the range of 4-10 million years (My). This age range encompasses the well-established exposure age peak at ∿7 My and an additional feature at ∿4 My. We determined the terrestrial ages on the basis of the ^Cl concentration as well as using the relation between the ^Cl/^Be ratio and the ^Be concentration. This relation also corrects for shielding effects and reduces the uncertainty in the age by ∿25% compared to simple ^Cl terrestrial ages. About 40% of the meteorites are older than 100 thousand years (ky), but none are older than 200ky. The relatively short terrestrial ages suggest that Frontier Mountain is a young meteorite stranding area. This seems to be supported by the bedrock exposure history, which shows a recent surface exposure≤70ky

    Lithologies Making Up CM Carbonaceous Chondrites and Their Link to Space Exposure Ages

    Get PDF
    Chondrite parent bodies are among the first large bodies to have formed in the early Solar System, and have since remained almost chemically unchanged having not grown large enough or quickly enough to undergo differentiation. Their major nonvolatile elements bear a close resemblance to the solar photosphere. Previous work has concluded that CM chondrites fall into at least four distinct space exposure age groups (0.1 Ma, 0.2 Ma, 0.6 Ma and >2.0 Ma), but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios

    CM Carbonaceous Chondrite Lithologies and Their Space Exposure Ages

    Get PDF
    The CMs are the most commonly falling C chondrites, and therefore may be a major component of C-class asteroids, the targets of several current and future space missions. Previous work [1] has concluded that CM chondrites fall into at least four distinct cosmic ray space exposure (CRE) age groups (0.1 million years, 0.2 million years, 0.6 million years and greater than 2.0 million years), an unusually large number, but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios, or something else entirely. The objective of this study is to investigate the diversity of lithologies which make up CM chondrites, in order to determine whether the different exposure ages correspond to specific, different CM lithologies, which permit us to constrain the history of the CM parent body(ies). We have already reported significant petrographic differences among CM chondrites [2-4]. We report here our new results

    Dating the Siple Dome (Antarctica) Ice Core By Manual and Computer Interpretation of Annual Layering

    Get PDF
    The Holocene portion of the Siple Dome (Antarctica) ice core was dated by interpreting the electrical, visual and chemical properties of the core. The data were interpreted manually and with a computer algorithm. The algorithm interpretation was adjusted to be consistent with atmospheric methane stratigraphic ties to the GISP2 (Greenland Ice Sheet Project 2) ice core, (BE)-B-10 stratigraphic ties to the dendrochronology C-14 record and the dated volcanic stratigraphy. The algorithm interpretation is more consistent and better quantified than the tedious and subjective manual interpretation

    In situ cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake Bonneville, Utah, shoreline features

    Get PDF
    Well-dated bedrock surfaces associated with the highstand and subsequent catastrophic draining of Pleistocene Lake Bonneville, Utah, during the Bonneville flood are excellent locations for in situ cosmogenic nuclide production rate calibration. The CRONUS-Earth project sampled wave-polished bedrock and boulders on an extensive wave-cut bench formed during the Bonneville-level highstand that was abandoned almost instantaneously during the Bonneville flood. CRONUS-Earth also sampled the Tabernacle Hill basalt flow that erupted into Lake Bonneville soon after its stabilization at the Provo level, following the flood. New radiocarbon dating results from tufa at the margins of Tabernacle Hill as part of this study have solidified key aspects of the exposure history at both sites. Both sites have well-constrained exposure histories in which factors such as potential prior exposure, erosion, and shielding are either demonstrably negligible or quantifiable. Multi-nuclide analyses from multiple labs serve as an ad hoc inter-laboratory comparison that supplements and expands on the formalized CRONUS-Earth and CRONUS-EU inter-laboratory comparisons (Blard et al., 2015; Jull et al., 2015; Vermeesch et al., 2015). Results from 10Be, 26Al, and 14C all exhibit scatter comparable to that observed in the CRONUS-Earth effort. Although a 36Cl inter-laboratory comparison was not completed for Jull et al. (2015), 36Cl from plagioclase mineral separates exhibits comparable reproducibility. Site production rates derived from these measurements provide valuable input to the global production rate calibration described by Borchers et al. (2015). Whole-rock 36Cl concentrations, however, exhibit inter-laboratory variation exceeding analytical uncertainty and outside the ranges observed for the other nuclides (Jull et al., 2015). A rigorous inter-laboratory comparison studying the systematics of whole-rock 36Cl extraction techniques is currently underway with the goals of delineating the source(s) of this discrepancy and standardizing these procedures going forward

    Geological calibration of spallation production rates in the CRONUS-Earth project

    Get PDF
    Models of the production of cosmogenic nuclides typically incorporate an adjustable production rate parameter that is scaled for variations in production with latitude and altitude. In practice, this production rate parameter is set by calibration of the model using cosmogenic nuclide data from sites with independent age constraints. In this paper, we describe a calibration procedure developed during the Cosmic-Ray Produced Nuclide Systematics on Earth (CRONUS-Earth) project and its application to an extensive data set that included both new CRONUS-Earth samples and samples from previously published studies. We considered seven frameworks for elevation and latitude scaling and five commonly used cosmogenic nuclides, 3He, 10Be, 14C, 26Al, and 36Cl. In general, the results show that the calibrated production rates fail statistical tests of goodness-of-fit. One conclusion from the calibration results is that two newly developed scaling frameworks and the widely used Lal scaling framework provide qualitatively similar fits to the data, while neutron-monitor based scaling frameworks have much poorer fit to the data. To further test the fitted models, we computed site ages for a number of secondary sites not included in the primary calibration data set. The root-mean-square percent differences between the median computed ages for these secondary sites and independent ages range from 7.1% to 27.1%, differences that are much larger than the typical uncertainties in the site ages. The results indicate that there are substantial unresolved difficulties in modeling cosmogenic nuclide production and the calibration of production rates

    The WAIS Divide deep ice core WD2014 chronology - Part 2: Annual-layer counting (0-31 ka BP)

    Get PDF
    International audienceWe present the WD2014 chronology for the upper part (0–2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposi-tion of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cos-mogenic isotope records of 10 Be from WAIS Divide and 14 C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5 % of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1 % of the age at three abrupt climate change events between 27 and 31 ka. WD2014 has consistently younger ages than Green-land ice core chronologies during most of the Holocene. For Published by Copernicus Publications on behalf of the European Geosciences Union. 770 M. Sigl et al.: The WAIS Divide deep ice core WD2014 chronology the Younger Dryas–Preboreal transition (11.595 ka; 24 years younger) and the Bølling–Allerød Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity , atmospheric mineral dust, and atmospheric methane concentrations
    corecore