101 research outputs found

    Periodic elements of the free idempotent generated semigroup on a biordered set

    Full text link
    We show that every periodic element of the free idempotent generated semigroup on an arbitrary biordered set belongs to a subgroup of the semigroup

    Finite complete rewriting systems for regular semigroups

    Get PDF
    It is proved that, given a (von Neumann) regular semigroup with finitely many left and right ideals, if every maximal subgroup is presentable by a finite complete rewriting system, then so is the semigroup. To achieve this, the following two results are proved: the property of being defined by a finite complete rewriting system is preserved when taking an ideal extension by a semigroup defined by a finite complete rewriting system; a completely 0-simple semigroup with finitely many left and right ideals admits a presentation by a finite complete rewriting system provided all of its maximal subgroups do.Comment: 11 page

    Cross-connection structure of concordant semigroups

    Full text link
    Cross-connection theory provides the construction of a semigroup from its ideal structure using small categories. A concordant semigroup is an idempotent-connected abundant semigroup whose idempotents generate a regular subsemigroup. We characterize the categories arising from the generalised Green relations in the concordant semigroup as consistent categories and describe their interrelationship using cross-connections. Conversely, given a pair of cross-connected consistent categories, we build a concordant semigroup. We use this correspondence to prove a category equivalence between the category of concordant semigroups and the category of cross-connected consistent categories. In the process, we illustrate how our construction is a generalisation of Nambooripad's cross-connection analysis of regular semigroups. We also identify the inductive cancellative category associated with a pair of cross-connected consistent categories

    Lattice isomorphisms of bisimple monogenic orthodox semigroups

    Full text link
    Using the classification and description of the structure of bisimple monogenic orthodox semigroups obtained in \cite{key10}, we prove that every bisimple orthodox semigroup generated by a pair of mutually inverse elements of infinite order is strongly determined by the lattice of its subsemigroups in the class of all semigroups. This theorem substantially extends an earlier result of \cite{key25} stating that the bicyclic semigroup is strongly lattice determined.Comment: Semigroup Forum (published online: 15 April 2011

    F-regular semigroups

    Get PDF
    A semigroup S is called F-regular if S is regular and if there exists a group congruence rho on S such that every rho-class contains a greatest element with respect to the natural partial order of S (see [K.S. Nambooripad, Proc. Edinburgh Math. Soc. 23 (1980) 249-260]). These semigroups were investigated in [C.C. Edwards, Semigroup Forum 19 (1980) 331-345] where a description similar to the F-inverse case (see [R. McFadden, L. O'Carroll, Proc. London Math. Soc. 22 (1971) 652-666]) is given. Further characterizations of F-regular semigroups, including an axiomatic one, are provided. The main objective is to give a new representation of such semigroups by means of Szendrei triples (see [M. Szendrei, Acta Sci. Math. 51 (1987) 229-249]). The particular case of F-regular semigroups S satisfying the identity (xy)* = y*x*, where x* epsilon S denotes the greatest element of the rho-class containing x epsilon S, is considered. Also the F-inversive semigroups, for which this identity holds, are characterized. (C) 2004 Elsevier Inc. All rights reserved.Fundação para a Ciência e a Tecnologia (FCT) - POCTI

    On regularity and the word problem for free idempotent generated semigroups

    Get PDF
    The category of all idempotent generated semigroups with a prescribed structure E of their idempotents E (called the biordered set) has an initial object called the free idempotent generated semigroup over E, defined by a presentation over alphabet E, and denoted by IG(E). Recently, much effort has been put into investigating the structure of semigroups of the form IG(E), especially regarding their maximal subgroups. In this paper we take these investigations in a new direction by considering the word problem for IG(E). We prove two principal results, one positive and one negative. We show that, for a finite biordered set E, it is decidable whether a given word w ∈ E∗represents a regular element; if in addition one assumes that all maximal subgroups of IG(E) have decidable word problems, then the word problem in IG(E) restricted to regular words is decidable. On the other hand, we exhibit a biorder E arising from a finite idempotent semigroup S, such that the word problem for IG(E) is undecidable, even though all the maximal subgroups have decidable word problems. This is achieved by relating the word problem of IG(E) to the subgroup membership problem in finitely presented groups

    Cross-connection structure of concordant semigroups

    Full text link
    Cross-connection theory provides the construction of a semigroup from its ideal structure using small categories. A concordant semigroup is an idempotent-connected abundant semigroup whose idempotents generate a regular subsemigroup. We characterize the categories arising from the generalized Green relations in the concordant semigroup as consistent categories and describe their interrelationship using cross-connections. Conversely, given a pair of cross-connected consistent categories, we build a concordant semigroup. We use this correspondence to prove a category equivalence between the category of concordant semigroups and the category of cross-connected consistent categories. In the process, we illustrate how our construction is a generalization of the cross-connection analysis of regular semigroups. We also identify the inductive cancellative category associated with a pair of cross-connected consistent categories. © 2020 World Scientific Publishing Company.The first author acknowledges the financial support of the Competitiveness Enhancement Program of Ural Federal University, Russia during the preparation of this paper

    Cross-connections of linear transformation semigroups

    Full text link
    Cross-connection theory developed by Nambooripad is the construction of a regular semigroup from its principal left (right) ideals using categories. We use the cross-connection theory to study the structure of the semigroup Sing(V) of singular linear transformations on an arbitrary vector space V over a field K. There is an inbuilt notion of duality in the cross-connection theory, and we observe that it coincides with the conventional algebraic duality of vector spaces. We describe various cross-connections between these categories and show that although there are many cross-connections, upto isomorphism, we have only one semigroup arising from these categories. But if we restrict the categories suitably, we can construct some interesting subsemigroups of the variants of the linear transformation semigroup. © 2018, Springer Science+Business Media, LLC, part of Springer Nature

    Presentations for singular wreath products

    Get PDF
    For a monoid M and a subsemigroup S of the full transformation semigroup Tn, the wreath product M≀S is defined to be the semidirect product Mn ⋊S, with the coordinatewise action of S on Mn. The full wreath product M≀T n is isomorphic to the endomorphism monoid of the free M-act on n generators. Here we are particularly interested in the case that S=Sing n is the singular part of Tn, consisting of all non-invertible transformations. Our main results are presentations for M≀Sing n in terms of certain natural generating sets, and we prove these via general results on semidirect products and wreath products. We re-prove a classical result of Bulman-Fleming that M≀Sing n is idempotent-generated if and only if the set M/L of L-classes of M forms a chain under the usual ordering of L-classes, and we give a presentation for M≀Sing n in terms of idempotent generators for such a monoid M. Among other results, we also give estimates for the minimal size of a generating set for M≀Sing n, as well as exact values in some cases (including the case that M is finite and M/L is a chain, in which case we also calculate the minimal size of an idempotent generating set). As an application of our results, we obtain a presentation (with idempotent generators) for the idempotent-generated subsemigroup of the endomorphism monoid of a uniform partition of a finite set
    corecore