41 research outputs found

    Ca2+ and Ca2+-Activated K+ Channels That Support and Modulate Transmitter Release at the Olivocochlear Efferent-Inner Hair Cell Synapse

    Get PDF
    In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast and inhibitory. This efferent synapse is mediated by the nicotinic α9α10 receptor coupled to the activation of SK2 Ca2+-activated K+ channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage-clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q-and N-type voltage-gated calcium channels (VGCCs), ω-agatoxin IVA and ω-conotoxin GVIA, respectively, we show that Ca2+ entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca2+ entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca2+-activated K+ channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels which are known to curtail the duration of the terminal action potential in several types of neurons

    Short-Term Synaptic Plasticity Regulates the Level of Olivocochlear Inhibition to Auditory Hair Cells

    Get PDF
    In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked IPSCs (eIPSCs) are mediated solely by α9α10 nAChRs functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1 Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies >10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier

    Bottom-up construction of complex biomolecular systems with cell-free synthetic biology

    Get PDF
    Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner

    Activation of presynaptic GABA(B(1a,2)) receptors inhibits synaptic transmission at mammalian inhibitory cholinergic olivocochlear-hair cell synapses

    Get PDF
    The synapse between olivocochlear (OC) neurons and cochlear mechanosensory hair cells is cholinergic, fast, and inhibitory. The inhibitory sign of this cholinergic synapse is accounted for by the activation of Ca(2+)-permeable postsynaptic alpha9alpha10 nicotinic receptors coupled to the opening of hyperpolarizing Ca(2+)-activated small-conductance type 2 (SK2)K(+) channels. Acetylcholine (ACh) release at this synapse is supported by both P/Q- and N-type voltage-gated calcium channels (VGCCs). Although the OC synapse is cholinergic, an abundant OC GABA innervation is present along the mammalian cochlea. The role of this neurotransmitter at the OC efferent innervation, however, is for the most part unknown. We show that GABA fails to evoke fast postsynaptic inhibitory currents in apical developing inner and outer hair cells. However, electrical stimulation of OC efferent fibers activates presynaptic GABA(B(1a,2)) receptors [GABA(B(1a,2))Rs] that downregulate the amount of ACh released at the OC-hair cell synapse, by inhibiting P/Q-type VGCCs. We confirmed the expression of GABA(B)Rs at OC terminals contacting the hair cells by coimmunostaining for GFP and synaptophysin in transgenic mice expressing GABA(B1)-GFP fusion proteins. Moreover, coimmunostaining with antibodies against the GABA synthetic enzyme glutamic acid decarboxylase and synaptophysin support the idea that GABA is directly synthesized at OC terminals contacting the hair cells during development. Thus, we demonstrate for the first time a physiological role for GABA in cochlear synaptic function. In addition, our data suggest that the GABA(B1a) isoform selectively inhibits release at efferent cholinergic synapses

    Suppressing Recoil Heating in Levitated Optomechanics Using Squeezed Light

    No full text
    We theoretically show that laser recoil heating in free-space levitated optomechanics can be arbitrarily suppressed by shining squeezed light onto an optically trapped nanoparticle. The presence of squeezing modifies the quantum electrodynamical light-matter interaction in a way that enables us to control the amount of information that the scattered light carries about a given mechanical degree of freedom. Moreover, we analyze the trade-off between measurement imprecision and back-action noise and show that optical detection beyond the standard quantum limit can be achieved. We predict that, with state-of-the-art squeezed light sources, laser recoil heating can be reduced by at least 60% by squeezing a single Gaussian mode with an appropriate incidence direction, and by 98% by squeezing a properly mode-matched mode. Our results, which are valid both for motional and librational degrees of freedom, will lead to improved feedback cooling schemes as well as boost the coherence time of optically levitated nanoparticles in the quantum regime.ISSN:2691-339
    corecore