21 research outputs found

    Blunted Response to Combination Antiretroviral Therapy in HIV Elite Controllers: An International HIV Controller Collaboration

    Get PDF
    Objective: HIV “elite controllers” (ECs) spontaneously control viral load, but some eventually require combination antiretroviral treatment (cART), due to a loss of viral control or a decline in CD4 T-cell counts. Here we studied the CD4 T-cell count dynamics after cART initiation among 34 ECs followed in U.S. and European cohorts, by comparison with chronically viremic patients (VIRs). Methods: ECs were defined as patients with at least ≄5 viral load (VL) measurements below 400 copies/mL during at least a 5-year period despite never receiving ART and were selected from the French ANRS CO18 cohort, the U.S. SCOPE cohort, the International HIV Controllers study and the European CASCADE collaboration. VIRs were selected from the ANRS COPANA cohort of recently-diagnosed (<1 year) ART-naĂŻve HIV-1-infected adults. CD4 T-cell count dynamics after cART initiation in both groups were modelled with piecewise mixed linear models. Results: After cART initiation, CD4 T-cell counts showed a biphasic rise in VIRs with: an initial rapid increase during the first 3 months (+0.63/month), followed by +0.19/month. This first rapid phase was not observed in ECs, in whom the CD4Tc count increased steadily, at a rate similar to that of the second phase observed in VIRs. After cART initiation at a CD4 T-cell count of 300/mm3, the estimated mean CD4 T-cell gain during the first 12 months was 139/mm3 in VIRs and 80/mm3 in ECs (p = 0.048). Conclusions: cART increases CD4 T-cell counts in elite controllers, albeit less markedly than in other patients

    2016 LeChenadec

    No full text
    2016 annual report for Vincent LeChenadec Blue Waters Professor allocationNSF OCI-0725070NSF ACI-1238993Ope

    Low-Cost I–V Tracer for PV Fault Diagnosis Using Single-Diode Model Parameters and I–V Curve Characteristics

    No full text
    International audienceThe continuous health monitoring of PV modules is mandatory to maintain their high efficiency and minimize power losses due to faults or failures. In this work, a low-cost embedded tracer is developed to measure the I–V curve of a PV module in less than 0.2 s. The data are used to extract the five parameters of the single-diode model and its main characteristics (open-circuit voltage, short-circuit current, and maximum power). Experimental data are used to validate the analytical model and evaluate the two fault diagnosis methods, using as fault features the parameters of the single-diode model or the main characteristics of the I–V curve. The results, based on field data under different temperatures and irradiances, show that the degradation of series and shunt resistances could be detected more accurately with the main characteristics rather than with the parameters. However, the estimated parameters could still be used to monitor the long-term degradation effects
    corecore