113 research outputs found

    Differential Games Controllers That Confine a System to a Safe Region in the State Space, With Applications to Surge Tank Control

    Get PDF
    Surge tanks are units employed in chemical processing to regulate the flow of fluids between reactors. A notable feature of surge tank control is the need to constrain the magnitude of the Maximum Rate of Change (MROC) of the surge tank outflow, since excessive fluctuations in the rate of change of outflow can adversely affect down-stream processing (through disturbance of sediments, initiation of turbulence, etc.). Proportional + Integral controllers, traditionally employed in surge tank control, do not take direct account of the MROC. It is therefore of interest to explore alternative approaches. We show that the surge tank controller design problem naturally fits a differential games framework, proposed by Dupuis and McEneaney, for controlling a system to confine the state to a safe region of the state space. We show furthermore that the differential game arising in this way can be solved by decomposing it into a collection of (one player) optimal control problems. We discuss the implications of this decomposition technique, for the solution of other controller design problems possessing some features of the surge tank controller design problem

    ALOHA With Collision Resolution(ALOHA-CR): Theory and Software Defined Radio Implementation

    Full text link
    A cross-layer scheme, namely ALOHA With Collision Resolution (ALOHA-CR), is proposed for high throughput wireless communications in a cellular scenario. Transmissions occur in a time-slotted ALOHA-type fashion but with an important difference: simultaneous transmissions of two users can be successful. If more than two users transmit in the same slot the collision cannot be resolved and retransmission is required. If only one user transmits, the transmitted packet is recovered with some probability, depending on the state of the channel. If two users transmit the collision is resolved and the packets are recovered by first over-sampling the collision signal and then exploiting independent information about the two users that is contained in the signal polyphase components. The ALOHA-CR throughput is derived under the infinite backlog assumption and also under the assumption of finite backlog. The contention probability is determined under these two assumptions in order to maximize the network throughput and maintain stability. Queuing delay analysis for network users is also conducted. The performance of ALOHA-CR is demonstrated on the Wireless Open Access Research Platform (WARP) test-bed containing five software defined radio nodes. Analysis and test-bed results indicate that ALOHA-CR leads to significant increase in throughput and reduction of service delays

    A New Gaussian Mixture Algorithm for GMTI Tracking Under a Minimum Detectable Velocity Constraint

    No full text
    Published versio

    On the Semantic Approaches to Boolean Grammars

    Get PDF
    Boolean grammars extend context-free grammars by allowing conjunction and negation in rule bodies. This new formalism appears to be quite expressive and still efficient from a parsing point of view. Therefore, it seems reasonable to hope that boolean grammars can lead to more expressive tools that can facilitate the compilation process of modern programming languages. One important aspect concerning the theory of boolean grammars is their semantics. More specifically, the existence of negation makes it difficult to define a simple derivation-style semantics (such as for example in the case of context-free grammars). There have already been proposed a number of different semantic approaches in the literature. The purpose of this paper is to present the basic ideas behind each method and identify certain interesting problems that can be the object of further study in this area

    Driver Inattention During Vehicle Automation: How Does Driver Engagement Affect Resumption Of Control?

    Get PDF
    This driving simulator study, conducted as part of the EC-funded AdaptIVe project, investigated the effect of level of distraction during automation (Level 2 SAE) on drivers’ ability to assess automation uncertainty and react to a potential collision scenario. Drivers’ attention to the road was varied during automation in one of two driving screen manipulation conditions: occlusion by light fog and occlusion by heavy fog. Vehicle-based measures, drivers’ eye movements and response profiles to events after an automation uncertainty period were measured during a highly automated drive containing one of these manipulations, and compared to manual driving. In two of seven uncertainty events, a lead vehicle braked, causing a critical situation. Drivers' reactions to these critical events were compared in a between-subjects design, where the driving scene was manipulated for 1.5 minutes. Results showed that, during automation, drivers’ response profile to a potential collision scenario was less controlled and more aggressive immediately after the transition, compared to when they were in manual control. With respect to screen manipulation in particular, drivers in the heavy fog condition collided with the lead vehicle more often and also had a lower minimum headway compared to those in the light fog condition

    Identifying cognitive distraction using steering wheel reversal rates

    Get PDF
    The influence of driver distraction on driving performance is not yet well understood, but it can have detrimental effects on road safety. In this study, we examined the effects of visual and non-visual distractions during driving, using a high-fidelity driving simulator. The visual task was presented either at an offset angle on an in-vehicle screen, or on the back of a moving lead vehicle. Similar to results from previous studies in this area, non-visual (cognitive) distraction resulted in improved lane keeping performance and increased gaze concentration towards the centre of the road, compared to baseline driving, and further examination of the steering control metrics indicated an increase in steering wheel reversal rates, steering wheel acceleration, and steering entropy. We show, for the first time, that when the visual task is presented centrally, drivers’ lane deviation reduces (similar to non-visual distraction), whilst measures of steering control, overall, indicated more steering activity, compared to baseline. When using a visual task that required the diversion of gaze to an in-vehicle display, but without a manual element, lane keeping performance was similar to baseline driving. Steering wheel reversal rates were found to adequately tease apart the effects of non-visual distraction (increase of 0.5 degree reversals) and visual distraction with offset gaze direction (increase of 2.5 degree reversals). These findings are discussed in terms of steering control during different types of in-vehicle distraction, and the possible role of manual interference by distracting secondary tasks

    Cognitive Driver Distraction Improves Straight Lane Keeping: A Cybernetic Control Theoretic Explanation

    Get PDF
    Experimental data revealed that drivers performing a visual secondary task exhibited deteriorated lane keeping performance, but that the same drivers performing a cognitive secondary exhibited an improvement in lane keeping compared to baseline driving. In this paper we present a computational cybernetic driver model that characterizes the effect of difference in eye fixation durations between on and off road glances across the three task conditions on straight lane keeping performance. The model uses perceptual cues as control input, maintains internal representations of these cues across fixations through Bayesian updating, and each time a change in cue magnitude is perceived based on mechanisms akin to signal detection theory a change in control is applied. The model is shown to be able to capture the experimental results encouragingly well. The model also sheds light on the relative magnitude of lane keeping performance degradation caused by glancing away from the road and the fact that internal representations are degraded each time a saccade takes place. The adopted approach to modeling driver perception during and across fixations is expected to lead to new insights into the effects that various in-vehicle activities have on driving performance and risk

    The need for speed: global optic flow speed influences steering

    Get PDF
    How do animals follow demarcated paths? Different species are sensitive to optic flow and one control solution is to maintain the balance of flow symmetry across visual fields; however, it is unclear whether animals are sensitive to changes in asymmetries when steering along curved paths. Flow asymmetries can alter the global properties of flow (i.e. flow speed) which may also influence steering control. We tested humans steering curved paths in a virtual environment. The scene was manipulated so that the ground plane to either side of the demarcated path produced larger or smaller asymmetries in optic flow. Independent of asymmetries and the locomotor speed, the scene properties were altered to produce either faster or slower globally averaged flow speeds. Results showed that rather than being influenced by changes in flow asymmetry, steering responded to global flow speed. We conclude that the human brain performs global averaging of flow speed from across the scene and uses this signal as an input for steering control. This finding is surprising since the demarcated path provided sufficient information to steer, whereas global flow speed (by itself) did not. To explain these findings, existing models of steering must be modified to include a new perceptual variable: namely global optic flow speed
    • …
    corecore