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1. INTRODUCTION AND HOPF THEOREM 

This work is a continuation of the recent research of Hsti and Kazarinoff [3] 
on the Hopf bifurcation formula and it’s application to the Fitzhugh system. In 
[3], Hsii and Kazarinoff derived a criterion for the stability of bifurcating periodic 
solutions of the n-dimensional autonomous differential system (I. 1) below. Their 
criterion applies if a certain quantity pa is not zero. We obtain a new criterion 
in this paper to determine the direction and stability of periodic solutions of 
(1.1) if that quantity is zero. We also apply this criterion to Fitzhugh’s system. 
We prove that this system has a family of unstable periodic solutions even if 
the parameters satisfy the condition 1 + pbs - 2b = 0. 

The general n-dimensional autonomous differential system we study is 

* = JCL) x + qx, CL), (l-1) 

where x = col(x, , x2 ,..., x,), P = col(pl ,..., pn), P(O, p) = 0, and p,(O, p) = @ 
Suppose the pi are real analytic functions on G x (-c, c), where G is an open 
connected domain in Rn, c > 0, and A is a real n x n analytic matrix defined on 
( --c, c) with exactly two purely imaginary eigenvalues at p = 0 whose continu- 
ous extensions a(p), C%(P) satisfy the conditions: 

a(O) = -G(O), Re(a’(O)) # 0, 

with Im(ol(0)) = w,, > 0. Under this assumption, the Hopf theorem is 

THEOREM (E. Hopf). There exists an q, > 0 such that for each E on an interwal 

( ME ,, , co) there exists a periodic solution p(t, l ) with period T(r) of (2.1), where the 
parameter E is related to p by a functional relation p = P(E) such that ~(0) = 0, 
p(t, 0) = 0, and p(t, e) # 0 for all su@iciently small E # 0. Moreover, p(e), p(t, C) 
and T(E) are analytic at c = 0, and T(0) = 27rlwo . These periodic solutions exist 
for one of three cases: either only for p > 0, or only for TV < 0, or only for p = 0. 
Furthermore, fo7 each L > T(0) there exist a > 0, b > 0 such that if j p 1 < b, 
then there is no nonconstant periodic solution with period less than L, besides the 
bzfurcating periodic solutions p(t, 6) with E > 0, that lies entirely in {x: x ! < a}. 
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2. GENERAL FORMULA FOR DIRECTION OF BIFURCATION 

Since $‘(x, p) is an analytic vector function of x and p, we may rewrite (1.1) 
using Taylor’s theorem as: 

f = A(P) x + Qr(x, x) + K&G x, 4 + Hu(x, x, x, 4 + M&, x, x, x, x) + ..a, 
(2.1) 

where the vector functions 

are analytic on /* and depend linearly on each argument vector. By the Hopf 
theorem, the periodic solutions p(t, 6) of (2.1), the period T(E), and the para- 
meter P(E) are analytic functions of E at E = 0: 

T(r) = T,(l + TIE + 7+s + *.*), (2.2) 

p(e) = plc + pg + He3 + **., (2.3) 

p(t, 4 = @o(t) + PI(f) E + P2@> E2 + **-), (2.4) 

where the p,(t) are T(e)-periodic functions. The sign of the first nonzero pLi 
plays an important role for the stability of the periodic solutions p(t, e). From the 
proof of the Hopf theorem, it follows that if ~(6) + 0, then the first nonzero 
coefficients in ~(6) and T(e) are of even order. In particular, p1 = or = 0. Now, 
suppose pr = 0; then ps = 0. In order to find a formula for pd , we introduce a 
new time variable s by 

t = s(l + T2C2 + T3E2 + -.). (2.5) 

We write q(s, E) for p(t, ) E and yd(s) for p,(t). Then both y(s, E) and y*(s) are 
T,,-periodic functions. Substituting (2.5) and (2.4) into (2.1), we have 

(1 - T2E2 - T3E3 - (T4 - T2”) 64 - -.) (y(s) + #(s) + 2-j+) + -*) 

= 44 Y + EQAY, Y) + E~K,(Y, Y> Y) (2.6) 
+ WAY, Y, Y, Y) + E4Mu(Y, Y, Y, Y, Y> + ... - 

Since A(p), Q, , Ku , H, , and Mu are analytic in p, we may write 

44 = 4-V + PA’(O) + (p2/2) A”(O) + -.-, (2.7) 

8, = Qo -t PQ~‘ + (112/2) Q;; + ..-> (2.8) 

K,, = Ko + I&,‘ + (p2/2) K; + ***, (2.9) 

H, = Ho + pHo’ + ($/2) H; + *.*, (2.10) 

Mu=Mo+pMo’+(p2/2)M;+-~~. (2.11) 
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We substitute (2.7)-(2.11) and (2.3) into (2.6) with ps = 0 and we compare the 
coefficients of l 1 (; = 0, 1,2,..). We obtain 

y = A(0) yo (2.12) 

9’ = 40) y1 + Q~(Y~, Y”> (2.13) 

-,‘3O + 9’ = 43 y2 + 2Qo(y”, yl) + Ko(yO, y”, Y’) (2.14) 

-7sjO - T*j+ + j” 

= 40) y3 + Qo(yl, Y’> + 2Qo(y”, Y’) + 3Ko(y”, Y’, Y’> (2.15) 

+ ffo(YO, YO, YO, YO) 

-(T4 - T2’) j” - T;j” - T,y + j4 

= 40) y4 + ~403 Y’ + 2Qo(y”, Y”> + ~Qo(Y’, Y”> 
+ 3Ko(Y0, Y”, Y2) 
+ 3KJ(y0, yl, yl) + 4&(y0, r”, YO, Y’) + Mo(yO, YO, YO, YO, YO)* 

(2.16) 

By using (2.12)-(2.16), we are able to determine p4 as well as T2 , T3 , Tq and y”, 
yr, y2, y3, y4. However, we do need the following lemma, which was introduced 
in Hopf’s paper. 

LEMMA 1. Suppose g(t) is a To-periodic function. Then the system 

Jr = A(O) z + g(t) (2.17) 

has a periodic solution with period To if and only if 

I 
To 

g(t) . Z*(t) dt = 0 
0 

(2.18) 

for all To-periodic solutions Z*(t) of the adjoint d@erential equation 

2* = -At(O) z*, (2.19) 

where At(O) is the transposed matrix of A(0). 

By our assumptions, there are two linearly independent To-periodic solutions 
Z,* and Z,* of (2.19). We may choose Z,* and Z,* so that 

s 
oroyo(s) . Z,*(s) ds = 1” ‘O s . o Y ( > z2*w ds = 1 (2.20) 

and 

s 
oFoyo(s) . Z,*(s) ds = IF0 ‘O s . o Y ( > Z,*(s) ds = 0 (2.21) 

where . is the inner product and y(t) is the To-periodic solution of (2.12). 
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By applying Lemma 1 and Hopf’s scheme for deriving the formula for 
pz Re(ol’(0)) to the system (2.12~(2.16), we easily obtain 

THEOREM 1. Under the hypotheses of the Hopf theorem, ifpz = 0, we have 

p4 WW) = - I,” C~Q~(Y~, rS) + 2Qo(y1, r2) + 3Ko(yo, r”, y2) 

+ 3Ko(r”, yl> Y’> + 4Ho(y”> Y”, 9, Y’> (2.22) 

+ MOW, YO, YO> r”, Y”> + T&w) Y1 + 7240) Y21 * G*(s) A, 

where p(s) and y’(s) are the To-periodic solutions of (2.12) and (2.13), respectively, 
y2(s) and y(s) are To-periodic solutions of 

3” = 40) y2 + 2Qo(y’, Y’) + KAYO, y”, y”) + 724-Y y” (2.23) 

and 

9 = T(O) Y’ + Qo(yl, ~9 + 2Qo(y”, y2) + 3Ko(y”, r”, ~7 

+ Ho(yO, y”, Y”, Y’) + 72A(0) y1 + ~2Qo( y”, y") + d(O) r", (2.24) 

respectively, and 

s 

70 
72 = - C2Qo(y”1 ~7 + K(YO, yet r”)l - Z,*(s) ds (2.25) 

0 

I 
To 

T3 = - [Qo(yl, Y’) + 2QoW’, Y”> + ~Ko(Y’s ~‘9 ~7 + Ho(Y~, ~‘7 ~‘9 ~9 
0 

+ T,A(o) y’] * z,*(S) ds. (2.26) 

To facilitate the computations that arise in applying Theorem 1, we use the 
method in Hsii and Kazarinoff [3]. We use the system 

P =&FL) Y + F(Y, CL) (2.27) 

instead of the system (1 .l), where L(p) = P-r&) P, y = P-lx, F( y, I”) = 
f’-lfl(P~, d, and 

(2.28) 

where w. = Im Y(O) > 0; see [3, Lemma 2.11 for the form of D. 
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By using the system (2.27), we can easily find J+‘(S) and &*(s) such that (2.20) 
and (2.21) hold: 

and 

yO(s) = (cos(wo , s), -sin(w,s), 0 ,..., O)t, (2.29) 

q*(s) = (l/T,) (cos(w,s), -sin(wos), O,..., O)t, (2.30) 

z2*(s) = -(l/(T,w,)) (sin (wg), cos(w,s), O,..., O)t. (2.31) 

By using (2.29)-(2.31) (see [3]), we are able to write down the solutions y’(s) 
of (2.13) precisely. Similarly, we obtain y2(s) and y3(s), and thus we compute 
pLa Re(ar’(0)) by (2.22). We shall not give the details in general. However, we 
illustrate the computations in Section 4 relative to Fitzhugh’s system. 

Remark. From the proof of the Hopf theorem, it is easy to see that the 
“analytic” assumption forfl(x, p) can be reduced to CL+r if we are only interested 
in the existence of P-periodic solutions; see [5] also. However, in order to 
obtain the formula (2.22), we do need to assume that E(x, CL) is a P-function. 

3. STABILITY OF BIFURCATING PERIODIC SOLUTIONS 

The characteristic exponents of a periodic solution p(t, E) are well known to 
be the eigenvalues of the eigenvalue problem 

V(t) + W(t) = qt, c) V(t), 

W) = WyE)), 
(3.1) 

where V(t) has the same period T( E as the solution p(t, c) and the function ) 

w 4 = 444) + ez’,(~(t~ 4 P(C)) (3.2) 

is periodic in t with period T(E) and is analytic in t and E at E = 0. The character- 
stic exponents depend continuously upon E and are determined only 
mod(2mlT(E)). A s E ---f 0, the exponents tend mod(2ri/To) to the exponents of 
the stationary solution of (1 .I) with p = 0. According to our assumptions, 
there are exactly two exponents that tend to the imaginary axis as E + 0. One of 
them is the one which vanishes identically, the other p = p(e) must be real and 
analytic at E = 0 and /3(O) = 0. We may write 

B=B,~+1B2E2+B3E3+19464+“‘. (3.3) 

By the conclusions of the Hopf theorem, PI = 0 and 

/T2 = -2p2 Re(ol’(0)). (3.4) 
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We may use the same scheme without any difficulty to derive 

p3 = -2~~ Re(ar’(0)) if ps = 0. 

Hence 
A = -2~4 R+‘(O)) 

(3.5) 

(3.6) 

if CL2 = 0 (since p3 = 0). Thus we have the following analog to [3, Theorem 3.11: 

THEOREM 2. Under the assumptions of Hopf’s theorem, if A(0) has exactly 
two pure imaginary eigenvalues and the other n - 2 have negative real parts and if 
p2 = 0 and pd Re(or’(0)) > 0, then a bifurcating periodic solution whose existence is 
asserted by Hopf’s theorem is asymptotically orbitally stable with asymptotic phase; 
however, if ELM Re(or’(0)) < 0 or z an one of the other n - 2 eigenvalues has a jc y 
positive real part, then the bifurcating periodic solutions are orbitally unstable. 

4. PERIODIC SOLUTIONS OF THE FITZHUGH EQUATIONS 

In this section we apply the results of Sections 2 and 3 to the system of 
Fitzhugh which was recently studied by Hsii and Kazarinoff [3] and Troy [4]. 
The Fitzhugh system is 

A?1 = a + x2 + Xl - 4x13, 

3i2 = p(a - xl - bx,), 
(4.1) 

where OL E (-co, co), 0 < b < 1, a E (--CO, co),, and p E (0, 1). Hsii and 
Kazarinoff [3] and Troy [4] have proved that if b E (0, $1, p E (0, l), and 
a E (-co, co), there exist cu, and 0~s such that the Fitzhugh system (4.1) has an 
asymptotical, periodic solution for each 01 E (CQ ,a1 + l ) or 01 E (CX~ - E, CLJ 
for some E > 0. However, if b E (i, I), p E (0, l), a E (--CO, CO), and 
1 + pb2 - 2b = 0, they were unable to determine the direction of bifurcation 
and stability of bifurcating periodic solutions. We determine them under these 
conditions. 

By Hsii and Kazarinoff [3], the system (4.1) can be rewritten as 

-woL) Y12 - it Y13 
P =&4Y + , (4.2) 

where OL = aj + p (j = 1, 2), (xl(a), x2(~)) is the unique steady state (x1(+) = 
-(l - pb)lj2, xi(01~) = (1 - pb)‘l”), L(p) = P-IA(p) P with 

A@) = (’ --;‘@) -f) (4.3) 
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which is the linearized matrix of (4.1) and 

p= -;b ( 2O)’ 
i 
$ 0 

p-1 = 

P WO pb 1 
__ 
2w, 2U~, 1 

- (4.4) 

Here &w,,;= -j(p-pb) 2 s 1~ i are the purely imaginary eigenvalues of A(O). 
Writing F(y, p) for the nonlinear part of (4.3), we have 

F’ = a2F’(o~ O)= -4x ( .) 11 
aY12 

1 % , 

(4.5) 

F2 = a3F20 0) = 8Pb 
111 

-- 

w wo 

and all other Fij and F$, and any higher derivatives are zero. From [3, Lemma 
2.21, we see directly that 

yl’(s) = k. {Ft,[sin(w,s) + 2 sin(w& cos(wo~)] 

+ F;L,[l + 2 cos(wos) + s~n”(wos)lI, (4.6) 

1 
372%) = GoP';1[--2 + c4wo4 + cos2(wos)] 

+ F:J--2 sin(wG) + 2 sin(w0.s) cos(wss)]}. (4.7) 

By (2,25), we have 

1 
r2=x 0 s 

’ [Fi,y,l(s) cos(wos) sin(w,,.r) + OFF,, cos2(wos) sin(w,+) 

+ Fflyll(s) cos2(wos) + &F& cos4(wos)] ds 

For the system (4.3), the differential equation (2.23) becomes 

(;:I - ( 0 wo Y12 
2 - -w 

0 H ) 0 Y22 
(4-9) 

Filyll(s) cos(wq) + *Fill cos3(wos) - 72wo sin(wd) 
cos3(wos) - T2Wo cos(wos) 1 - 
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It is not difficult to find the unique Ts-periodic solution y2(s) of (4.9) which 
satisfies the initial conditions 

jz(0) . e = 0 and j”(O) * e = 0, (4.10) 

where e = (0, - 1/2w,) was introduced in [3]: 

y1”(s) = -72 cos(wos) 

I m2 1 
6~,,~ [ 

‘j- + f COS(W#) - + cos2(w& + $ sin2(wG) COS(W~)] 

+ s [+ + $ cos(w,s) - $ cos2(wos) - $ sin2(wss) cos(ws.r)] 

FAG 
+ 6w02 - [sin(w,s) cos(wos) + 2sin(w,s) - sin(w,s) cos2(w,s)] 

+ & [sin”(wss) cos(wss) + 8 COS(W~)] (4.11) 

~~~(4 = 72 sin(wtil + e [-1 + COS(W,S) + sin2(wss) COS(W~)] 

m2 I 
6w02 [ - + sin(w& + f sin(ws.r) cos(ws.r) + f sin(wg) cost] 

I (%I2 
[ - 6w02 

$ sign + f sin(wsS) COS(W~) - $- sin(wss) cos2(w~)] 

$ll- 
+ ho [ 

- $ sin(wos) + + sin(w,s) cos2(w~)] . (4.12) 

Now, we are ready to compute ~a by (2.26). We obtain: 

1 G 1 7s = - 
ji [ Tow0 0 

TF:‘b11(sN2 + F:,Y,~(s) cos(wo4 

+ +F:,, y,‘(s) cos*(wos) + ~2q,r2*(4 sin(wq> ds 

+ Lro [-g%(rlw)P +ekw cos(w) (4.13) 

+ +F&, y,‘(s) cos2(wos) - 7&&(S)] cos w,s dr/ 

= &j [5(F;A3 + ~P:I)~F:; + 3~0~2’~11. 
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With 7s and 7s determined, the differential equation (2.24) is well defined. It 
becomes 

woY23 + ~mY11t~N2 + F:lY12t4 cos(wo4 

--woY13 + PTl(Yl’t4)2 + F:;Y12(4 costwo~) 1 

( 

~F~llyl’(s) cos2(wos) - 73wo sin(w$) 
+ (4.14) 

:F:-,,y,l(s) cos2(wos) - T3Wo cos(w& 

+ ~~w,y,‘(s) + +T,F;, COS~(W~S) 
+ 

- ~~w~y~'(s) + $7,F& cos2(wos) 

We can find a unique TO-periodic solution y3(s) of (4.14) which satisfies the 
initial conditions 

namely, 

p(O) . e = 0 and j3(0) * e = 0; (4.15) 

where 

x”(s) = costw,s> El1 + Ww) PI, 
y23(s) = -sin(w,s) [l] + cos(w,s) [2], 

(4.16) 

PI=&/ (F,,) 1 3[ 2 sin(w,s) - sin(2wOs) + 4 sin’(w,,s) 
0 

- $ sin(4wos) - 7 sir+(wg)] 

+ F&(Ffl)2 [26 sin(wG) + sin(2wg) - F sin3(wos) 

- $ sin(4wss) - -+ sin6(w,sf] 

+ (lQ2F& [F - Zj COS’(W0.S) - 5 COS4(WoS) + 3 C0S5(Wos) - sin4(w,s)] 

+ (F&)' [- g + + cos(w$) - 2 sin2(wos) 

+ F cos3(w$) - sin4(wss) + f cos5(wd)] 1 

- y Sin’(W) -I- f sin5(wos) f + sin(4w,g) + 6 sin(wr,.r)] 

f-F& [-; + 5cos*(w&- cos(wos) + 2 cos4(wos) - cos"(wos)]~ 
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It is not difficult to find the unique T,,-periodic solution yz(s) of (4.9) which 
satisfies the initial conditions 

j3(0) . e = 0 and j”(0) * e = 0, 

where e = (0, -1/2w,) was introduced in [3]: 

Y12(S) = -T2 cos(wos) 

(4.10) 

+ m2 1 
6w02 [ -j- + f cos(w()s) - 3 cos2(w#) + $ sin2(wG) cos(w~)] 

+ m* 4 
6w02 [ 

3 + + cos(wos) - f cos2(wos) - f .sin2(w,s) cos(wd)] 

+ s [sin(wos) cos(wos) + 2sin(w0s) - sin(w,s) cos2(w,s)] 

+ $ [sin”(w& c0s(w,~) + 8 COS(W&] (4.11) 

~~~(4 = 72 sin(w) + $$j [- 1 + cos(w,s) + sin*(w,s) cos(w~)] 

+ m2 
6w02 [ 

- $ sin(w& + f sin(wG) cos(w$) + $ sin(wd) cost] 

+ (%I2 
[ - 6w02 

-+ sin(eu,s) + f sin(wOs) cos(wg) - + sin(w& cosz(wO~)] 

F&l f- 
6~0 [ - + sin(w& + $ sin(w,s) cos2(w&] . (4.12) 

Now, we are ready to compute 7s by (2.26). We obtain: 

+ GlY12(*) Wwo*) 

+ +TllYl’(s) cos8(wo*> + 72woro’(s)] s+k+) d* 

+ p [+xYlw8 + RlYlv) CMW) (4.13) 

+ +F;nn’(*) cos2@o*) - ~2~0~114 ~0s wo* d*/ 

= & [5(F;d3 + 2(Ffd2~,2 + 3~&d1,1~ 
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Substituting the quantities of (4.5) into (4.17), we find 

p4 Re(ol’(0)) < 0. (4.18) 

By using Theorem 2, we obtain 

THEOREM 3. For any given b E (&, l), p E (0, I), and a E (0, co), there exist 
~1~ and oz and two positive numbers l 1 and Ed such that: (1) If 1 + pb2 - 2b > 0, 
then the Fitzhugh system (4.1) has a periodic solution for each a E (aI , CQ + EJ 
and each 01 E (CX~ - Ed , LYJ, und these bifurcating periodic solutions are usymp- 
toticully, orbitully stable with asymptotic phase. (2) If 1 + pb2 - 2b < 0, then 
(4.1) has a periodic solution for each 01 E (q - CQ , q) and each 01 E (a2 , a2 + Q), 
and these periodic solutions are orbitally unstable. The Lyi and q depend on a, b, p, 
and 01~ < o2 . 
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