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Abstract

It is widely accepted that the Central and Eastern Mediterranean are remnants of the Neo-
Tethys. However, the orientation and timing of spreading of this domain remain controversial.
Here, we present time migrated and pre-stack depth migrated NW-SE oriented Archimede
(1997) lines together with the PrisMed01 (1993) profile to constrain the evolution of the
Ionian basin. Our interpretation allows us to identify a large-scale set of SW-NE striking
reverse faults beneath the Ionian Abyssal Plain. These primarily NW vergent faults are
characterized by a spacing comprised between 10 to 20 km and a dip ranging from 60 to 65°.
Following very recent paleogeographic reconstructions, we propose that the set of N°55
features initially formed as normal faults during the NW-SE trending seafloor spreading of the
Ionian basin after its late Triassic-early Jurassic rifting. Based on geometric comparisons with
the intraplate deformation observed beneath the Central Indian Ocean, we show that the
inherited oceanic normal faults were reactivated under compression as reverse faults. Well-
developed Tortonian syntectonic basins developed NW of the major faults and the base of the
Messinian evaporites (Mobile Unit) is slightly folded by the activity of the faults. We show
that 3-4 km of total shortening occurs over a 80 km wide area beneath the Ionian Abyssal
Plain, resulting in a bulk shortening of 3.5-5 %. We propose a link between the Tortonian-
early Messinian inversion of the fault pattern and a plate tectonic reorganization prior to the

main phase of back-arc opening of the Tyrrhenian domain.



1-Introduction and geological setting

The Central Mediterranean area is characterized by wide-spread pattern of weak to moderate
seismicity, indicating a region undergoing diffuse deformation (Figure 1) [Chiarabba, et al.,
2005; Pondrelli, et al., 2006]. The seismotectonic setting of this region is the consequence of
the long-term African-Eurasian convergence, which is one of the primary controls on the
deformation in the region [Di Bucci, et al., 2010]. Geodetic studies conclude that the overall
Nubia-Eurasia convergence continues at very slow rates, ranging from 6 mm/yr near Greece
oriented N to NNW to 5-7 mm/yr near Sicily oriented NNW to NW [DeMets, et al., 1994;
Hollenstein, et al., 2003; Serpelloni, et al., 2007; D'Agostino, et al., 2008]. Regional Global
Positioning System (GPS) measurements can only be explained by the presence of a mosaic
of microplates in the Central Mediterranean, which move almost independently [Serpelloni, et

al., 2007; D'Agostino, et al., 2008; D'Agostino, et al., 2011].

Within the Ionian Sea, the Mediterranean Ridge and the Calabrian prism are interpreted as
two large accretionary complexes, which formed in response to the subduction of the African
plate beneath Eurasia (s.1.) (Figure 1) [Finetti, 1982; Reston, et al., 2002; Chamot-Rooke, et
al., 2005; Minelli and Faccenna, 2010]. The deep Ionian Abyssal Plain (IAP) is the foreland
of the Calabrian prism to the NW and of the western Mediterranean Ridge to the NE (Figure
1). It is a deep triangular basin roughly 5000 km? in area [Hieke, et al., 2005], well-defined by
the 4000 m depth isobath and bounded to the South by the Medina Seamounts (Figure 2). The
Victor Hensen Seahill 2 (VHS 2) and the Victor Hensen Seahill (VHS) rise above the South-
East of the IAP [Hieke, 1978; Hieke and Wanninger, 1985; Hieke, et al., 2005]. The VHS is
interpreted as a roughly 10 km long and 2 km wide SW-NE elongated tectonic structure
[Hieke and Wanninger, 1985; Hieke, et al., 2006]. North-West of the VHS, three SW/NE
subbottom structures were imaged: the Nathalie Structure (NaStr.), the Valvidia Structure

(VaStr.) and the Victor Hensen Seahill Structure (VHStr.), which was interpreted as the SW-



NE oriented subbottom continuation of the Victor Hensen Seahill [Finetti, 1982; Hieke, et al.,
2005] (Figure 2). In situ heat flow measurements show very low values beneath the Ionian
Abyssal Plain (30 to 40 mW/m?) (Figure 2) [Pasquale, et al., 2005]. South-West of the IAP,
close to the Medina Seamounts, these heat flow values increase (values range from 45 to 55

mW/m?) (Figure 2) [Pasquale, et al., 2005].

Numerous seismic reflection and refraction studies have imaged the IAP and the adjacent
crystalline basement [Finetti, 1982; Makris, et al., 1986; de Voogd, et al., 1992; Sioni, 1996;
Catalano, et al., 2001; Chamot-Rooke, et al., 2005; Hieke, et al., 2005]. There is an ongoing
debate regarding the nature of the crust under-lying the lonian Abyssal Plain. Some authors
consider that the high-amplitude layered band seismic signature near the base of the crust
differs from other old oceanic reflection images (e.g. eastern Atlantic Ocean) [Cernobori, et
al., 1996]. Others authors invoke the structural continuity between the Medina Seamounts
(known to be of continental affinity [Finetti, 1982; Hieke and Wanninger, 1985]) and the
Victor Hensen Seahill as an argument in favour of a thinned continental crust underlying the
IAP [Hieke, et al., 2005]. However, all the Expanding Spread Profile (ESP) results conclude
that the lonian Abyssal Plain is floored by a more than 5 km thick Meso-Cenozoic
sedimentary cover, deposited over a thin crust [Makris, et al., 1986; de Voogd, et al., 1992; Le
Meur, 1997]. These refraction results show a typical oceanic velocity gradient [Makris, et al.,
1986; de Voogd, et al., 1992; Le Meur, 1997] and a 7 to 9 km crustal thickness [Le Meur,
1997; Chamot-Rooke, et al., 2005], compatible with the world-wide compilation of typical
oceanic thicknesses [White, et al., 1992]. The depth of the Moho is 16 to 18 km beneath the
IAP and the mantle is characterized by a high refraction velocity of 8.5 km/s [de Voogd, et al.,

1992].

Paleogeographic reconstructions of the Central and Eastern Mediterranean basins are based on

geological data from the surrounding areas of the Mediterranean Sea (e.g. in Sicily, Tunisia,



Western Desert, Syria and Oman), and on the geometry of the paleo-passive and transform
margins (focused mainly on the Levant margin) (see references in [Stampfli, et al., 1991;
Ricou, 1994; Garfunkel, 1998; Golonka, 2004; Stampfli and Borel, 2004; Guiraud, et al.,
2005; Frizon de Lamotte, et al., 2011; Raulin, et al., 2011; Schettino and Turco, 2011]). These
paleogeographic studies all conclude that the Central and Eastern Mediterranean basins
corresponds to a relic of the Neo-Tethys [Sengdr, 1979]. But it is interpreted either as the
easternmost continuity of the Neo-Tethys [Stampfli, et al., 1991; Stampfli and Borel, 2004] or
as a secondary southern branch connected to it [Dercourt, et al., 1986; Ricou, 1994;
Garfunkel, 1998; Frizon de Lamotte, et al., 2011]. In the Central Mediterranean, the geometry
and timing of spreading of the Ionian basin is controversial [Stampfli, et al., 1991; Ricou,

1994; Handy, et al., 2010; Frizon de Lamotte, et al., 2011].

Some authors proposed that during the Cretaceous, the 30° counter-clockwise rotation of
Apulia with respect to Africa led to the opening of the Central and Eastern Mediterranean
[Dercourt, et al., 1986; Golonka, 2004]. This rotation was interpreted to be coeval with the
main phase of opening, deepening and widening of the Tonian basin [Chamot-Rooke, et al.,
2005]. These authors proposed that the Ionian basin ceased its spreading in late Cretaceous
time, contemporary with the Alpine collision with Eurasia, North of Apulia, as a consequence

of the northward motion of Africa [Dercourt, et al., 1986; Golonka, 2004].

Based on the presence of Permian marine basins from Sicily to Syria, many workers
concluded that the Neo-Tethys opened synchronously in the late Paleozoic across the entire
Eastern Mediterranean [Roberston, et al., 1991; Stampfli, et al., 1991; Stampfli and Borel,
2004]. In this framework, the lonian basin may have formed during the late Paleozoic, either
in response to rifting process [Stampfli, et al., 1991; Stampfli and Borel, 2004] or to back-arc
extension as a result of a southward-dipping subduction zone [Sengdr, 1979; Sengdr, et al.,

1984; Schettino and Turco, 2011]. The cessation of the spreading center in the basin is



interpreted to occur during the late Triassic, associated with the presence of the first important

rift structures in Italy [Schettino and Turco, 2011].

Very recently, it was suggested that the Eastern Mediterranean corresponds to a secondary
branch of the Neo-Tethys, that opened NW-SE following the late Triassic-early Jurassic
rifting [Frizon de Lamotte, et al., 2011; Raulin, et al., 2011]. In the easternmost
Mediterranean region, the presence of Triassic-Jurassic NE-SW veering to E-W normal faults
led workers to interpret the Levant margin and the Western Desert as passive margins, in
direct relation with the Neo-Tethyan rifting [Garfunkel, 1998; Guiraud, et al., 2005; Frizon de
Lamotte, et al., 2011]. In southern Tunisia, the Jeffara basin (Figure 1) is a very proximal
margin of the Ionian basin, where a similar late-Triassic-early Jurassic extensional
deformation is observed [Frizon de Lamotte, et al., 2011; Raulin, et al., 2011]. Within this
framework, these authors proposed that the Central Mediterranean opened in a NW-SE
direction during the late Triassic-early Jurassic [Frizon de Lamotte, et al., 2011; Raulin, et al.,
2011]. They further suggest that the Malta escarpment (Figure 1) is a NW-SE oriented
transform fault bounding this Neo-Tethyan domain towards the West [Frizon de Lamotte, et

al., 2011].

Although the post-Oligocene evolution of the Mediterranean (including the Ionian basin) is
well understood in the framework of a back-arc opening above a retreating subduction zone
[Faccenna, et al., 2001; Rosenbaum, et al., 2002], its prior paleogeographic evolution is still
controversial, in particular the geometry of rifting and spreading in the Ionian basin
[Dercourt, et al., 1986; Roberston, et al., 1991; Stampfli, et al., 1991; Garfunkel, 1998;
Golonka, 2004; Guiraud, et al., 2005; Handy, et al., 2010; Frizon de Lamotte, et al., 2011;

Raulin, et al., 2011; Schettino and Turco, 2011]. To address this question, we present the most



relevant time-migrated lines of the Archimede multichannel seismic survey (1997, R/V Le
Nadir) and the first pre-stack depth migrated profiles crossing the Ionian Abyssal Plain : the
Archimede 19 line and the PrisMedO1 line, acquired during the PrisMed survey (1993, R/V
Le Nadir). We first present the dataset used to study the Ionian Abyssal Plain and the
processing sequence applied, including details on the sophisticated pre-stack depth migration.
In a second part we propose a stratigraphy of the sediments deposited beneath the Ionian
Abyssal Plain, based on seismic correlations and new knowledge of the Messinian sediments
in the Mediterranean basins. We thus focus on the deformation affecting the sediments and
discuss the possible link with the Messinian deposition and the subbottom structures and
structural basement highs present beneath the Ionian Abyssal Plain. An interpretation of the
origin of these structures and timing of their reactivation and the kinematic implications is

then be proposed in the framework of the evolution of the IAP.

2- Multichannel seismic reflection data and processing
2-1.The 96-channel Archimede survey and processing of the data

The Archimede survey was conducted from 9™ to 24™ April 1997 onboard R/V Le Nadir
(Figure 1). The objectives were to image the deep structures of the Mediterranean Ridge and
the Calabrian wedge and the fracturing of the basement beneath the Ionian Abyssal Plain. The
Archimede seismic dataset consists of 35 seismic reflection profiles with a total length of
2500 km. Data were recorded by a 96-channel 2.4 km long streamer. The shot spacing of 50
meters and the 25 meters between each hydrophone provide a 24 fold coverage, with a CMP

spacing of 12.5 m. The seismic data were acquired with 4 ms sampling rate (250 Hz). The



source was an airgun array consisting of ten airguns for a total volume of 1220 cu.in,
operating in a single-bubble mode [Avedik, et al., 1996] and placed at a depth of 20 meters. In
contrast to tuned arrays, this kind of system exploits the strong energy contained in the first
bubble pulse delaying the firing of guns as a function of their volume in order to synchronize
the output of the guns with respect to this first pulse [Avedik, et al., 1996]. The single-bubble
method generates a powerful low frequency signal (10 to 15 Hz), which allows a better
penetration of signal to image the deep structures [Avedik, et al., 1996; Bartolome, et al.,

2005].

During data processing, with the GeoVecteur Software© developed by CGG (Compagnie
Générale de Géophysique), particular attention was paid to improve the continuity of the deep
reflectors beneath the IAP. A 6/8/55/65 pass-band and 49/50/51 notch filters, and a spherical
divergence correction were generally applied after a spectral analysis of the near trace of the
profiles. Before stacking, a predictive deconvolution was applied to the signal with a typical
window of 5 s TWT. This deconvolution attempts to predict and remove repetitions in the
recorded seismograms, it also acts like an anti-multiple on many profiles [Yilmaz, 1987]. For
each Archimede lines, a velocity analysis based on a semblance computation was performed
each 300 Common Mid Point (CMP) (equal to 3.75 km) to constrain the lateral velocity
variations. The velocity libraries obtained after interactive picking of these semblances are
used to compute a normal move out (NMO) correction. The NMO corrected CMP gather were
stacked in order to increase the signal/noise ratio. To correct numerous diffractions, in
particular in the deformed Messinian units in the wedges, different migration velocities were
tested. After some tests, we conclude that the diffractions are well corrected with a 2900 m/s
constant velocity Kirchhoff migration [Hubral, 1977], representative of the average of the

root-mean-square velocities in the full seismic section. This sequence was applied to entire



Archimede dataset, and was chosen for its efficiency as it considerably improves the strength

and the continuity of the deep reflectors beneath the IAP.

2-2.The 96-channel PrisMed cruise and processing of the data

The PrisMed seismic survey was conducted from February 27 to March 27 1993 and acquired
3600 km of seismic lines. Here, we will present only part of the PrisMed01 profile, acquired
from the Calabrian prism to the Ionian Abyssal Plain (Figure 1). The PrisMed01 line and the
Archimede 19 line were processed using the Pre-Stack Depth Migration (PSDM) technique.
The PrisMed seismic data were acquired with an AMG 96-channel streamer. The SERCEL
358 acquisition laboratory registered data with a sample rate of 4 ms. Six airguns were
immersed at a depth of 10 to 15 m. The signal was recorded with a 2.4 km long 96-channel
streamer moving. The shot point interval of 19.4 sec corresponding to a shot interval of 50 m

and yields to a 24-fold coverage, at a CMP spacing of 12.5 m.

Before performing depth-focussing analysis during Pre-Stack Depth Migration, several
processing steps were applied with the commercial processing software OMEGA2© from
WesternGeco to the raw seismic data (frequency filter, spherical divergence correction, shot
gather consistent deconvolution with 36 ms prediction lag and 200 ms operator length for the
shallow sediment structures and 72 ms prediction lag and 600 ms operator length for the
deeper structures, respectively). Special attention was paid to the water bottom multiple
attenuation. A combination of Wave-Equation demultiple (modelling, gather-match,
subtraction) and Frequency-Wavenumber (FK) demultiple (NMO over correction, filter,
inverse NMO) gave the best result. The Archimede 19 and PrisMed01 profiles were then
processed, with the commercial Kirchhoff migration package KirPack (SIRIUS, GX

Technology), to perform a Pre-Stack Depth Migration (PSDM). The PSDM not only produces



a section in depth, but also corrects for the refraction and bending of the rays at velocity
interfaces and gradients [Hubral, 1977]. A combination of iterative PSDM and focussing
analyses each 200 Common Depth-Point (CDP) yielded a geologically plausible internal
velocity model for the entire Archimede 19 and PrisMedO1 lines. Both profiles underwent a
series of 5 iterative migrations using a velocity model, from the top of the seismic section to
the bottom. It is necessary to construct the velocity model layer by layer from top to bottom,
as the upper layer velocities affect those determined for deeper units [Reston, et al., 1996]. To
begin with, the initial water velocity model is estimated for the seismic section, and a first
iteration is run. The result is tested and the velocity model is updated adding the presumed
uppermost sedimentary layers through depth-focussing error analysis. Then, a second iteration
is run, and the procedure is repeated until the entire section from the top to the bottom has
been analyzed for velocity. This procedure was repeated five times and the basement velocity
was fixed at 6 km/s, according to the results given by the seismic refraction studies [de Voogd,
etal., 1992]. The PSDM is particularly efficient because the orientation of the Archimede 19
and PrisMedO1 profiles (Figure 1), orthogonal to the primary structures. The result is an
optimized depth section migrated and an interval velocity model which is both detailed and

geologically meaningful.

3-Results

3-1.Stratigraphy beneath the Ionian Abyssal Plain



The sedimentary sequences are particularly well-imaged beneath the Ionian Abyssal Plain.
This is a consequence of the powerful source used during the Archimede and PrisMed seismic

surveys and the nearly complete lack of deformation affecting the shallow sediments.

The upper seismic unit corresponds to the unconsolidated Plio-Quaternary sediments. On the
Archimede and PrisMedO1 profiles, the Plio-Quaternary unit is characterized by a velocity
gradient of 1.8 to 2 km/s [de Voogd, et al., 1992; Le Meur, 1997] and by sub-parallel high-
frequency and low-amplitude reflectors [Hieke, et al., 2005; Minelli and Faccenna, 2010].
(Figures 3b and 3d). The thickness of these sediments is about 0.4 s TWT (about 400 m)
(Figures 3a and 4). They have been drilled by the site DSDP 374 (Figure 1), which allows
identification of a 300 m thick layer of Plio-Quaternary (PQ) sediments and a 60 to 80 m thick
Pliocene sequence [Hs(, et al., 1978], mostly composed of transparent seismic layered
turbidites, called “homogenites” [Hieke, 1984; Cita and Rimoldi, 1997; Hieke and Werner,
2000]. At the base of the Plio-Quaternary sequence, the strong continuous high-amplitude
reflector corresponds to the A-reflector (Figures 3a and 3c to 3e) [Finetti and Morelli, 1972]

and the E1-horizon (Figure 3b) [de Voogd, et al., 1992].

This A-reflector corresponds to the top of the Messinian unit [Finetti and Morelli, 1972],
except when morphological highs, associated with structural basement highs, are present (e.g.
Figure 4 (s.p. 6300 to 6420)). On the Archimede (Figure 3a) and PrisMedO1 lines (Figure 4),
the Messinian unit is composed of a weakly-reflective sequence (about 0.25 s TWT thick),
characterized by continuous reflectors, deposited over a reflection-free 0.35 s TWT thick unit.
The base of this reflection-free unit is marked by a planar high-amplitude reverse polarity
reflector, which corresponds to the B-reflector (Figures 3a and 3d) [Finetti and Morelli, 1972]
or the S1-horizon (Figure 3b) [de Voogd, et al., 1992]. The ESP 5 allows identification of an
intra-Messinian reflector (E2-horizon, Figure 3b). Based on the seismic facies, an “Upper

Evaporites” unit and a “Lower Evaporites” unit (composed of halite) were already



differentiated [HsU, et al., 1978]. The Messinian unit is constituted by two layers, with a
velocity inversion at its base (B-reflector) around 6.27 s TWT or 6.55 s TWT (from 4.5-4.2 to
3.0-3.2 km/s), depending on the ESP 5 model chosen (respectively, Figures 3b and 3e) [de

Voogd, et al., 1992; Le Meur, 1997].

Below the B-reflector, a sequence, characterized by a propagation velocity of 3 to 3.2 km/s
(Figures 3b and 3e) and by a succession of high-amplitude and low frequency reflectors
(Figure 3a) was interpreted as Tortonian in age [Cernobori, et al., 1996; Chamot-Rooke, et al.,
2005]. A Tortonian age has been proposed due to its stratigraphic position related to the
previously described “Lower Evaporites” [Chamot-Rooke, et al., 2005]. However, a recent
Atlas, dealing with seismic markers of the Messinian Salinity Crisis, proposed that a
“Messinian trilogy” [Ryan, et al., 1973] was deposited in the deep basins of the Western
Mediterranean area during the Crisis [Lofi, et al., 2011a]. It is based on seismic facies and the
geometric relationship of the units with respect to the evaporitic layer [Lofi, et al., 2011a],
previously called the Lower Evaporites [Ryan, et al., 1973; Hs(, et al., 1978]. The Messinian
sequence is then composed of a Messinian Upper Unit, characterized by a group of parallel
and relatively continuous reflections, underlain by a reflection-free seismic facies Messinian
Mobile Unit and finally a Messinian Lower Unit [Lofi, et al., 2011a]. Based primarily on
observations in the deepest part of the Gulf of Lion, the Messinian Lower Unit is described as
a group of continuous high-amplitude reflections that onlap the margin [Lofi, et al., 2005; Lofi
and Berne, 2008; Lofi, et al., 2011a; Lofi, et al., 2011b]. These authors do however caution
that the extension and the thickness of this Messinian Lower Unit remains poorly known
[Lofi, et al., 2011a]. On the Algerian margin, the reflectivity of this Messinian Lower Unit is
slightly lower than in the Gulf of Lion [Lofi, et al., 2011a]. On top of this unit of a planar
high-amplitude reflector has been identified and described as the B-reflector in the deep

Ionian Abyssal Plain (Figure 3). Based on seismic facies correlation and observation of the B-



reflector, we propose to adopt this “Messinian trilogy” to the lonian Abyssal Plain (Figure
3a). In this case, the Messinian Upper Unit and the reflection-free Messinian Mobile Unit lie
above the B-reflector and the Messinian Lower Unit below the B-reflector. The base of the
Messinian Lower Unit is characterized by a continuous high-amplitude reflector (Figure 3a:

D2-reflector [Sioni, 1996], Figure 3e: PM1-reflector [Hieke, et al., 2005]).

This reflector corresponds to the top of a syntectonic unit, characterized by a group of high-
amplitude low-frequency reflections (Figure 3a). We proposed a Tortonian age for this unit,
present in sub-basins beneath the lonian Abyssal Plain (Figure 4). Below this unit, an
undifferentiated Tertiary sequence has been interpreted due to its stratigraphy position
compared to the position of the K-reflector. The K-reflector was interpreted as a planar and
continuous reflector at a 7.5 s TWT constant depth, corresponding to the top of the Mesozoic
sediments (Figure 3a) [Finetti and Morelli, 1972] (Figures 3a and 3e: PM2-reflector [Hieke, et

al., 2005]).

Published interpretations of refraction seismic data (ESP 5) allow identification of the top of
the Ionian oceanic crust at 8.1 s TWT depth (about 8.95 km depth), characterized by a
velocity gradient of 4.7 to 5 km/s [de Voogd, et al., 1992] (Figure 3b). This 8.3 km thick crust
is interpreted to be oceanic, due to the typical velocity gradient of an oceanic crust [White, et
al., 1992]. However, a re-interpretation of the ESP 5 (Figure 3e), using seismic profiles to
correlate the deeper refraction arrivals observed on this ESP (Figure 3d), conclude that a 4.7-
4.8 km/s layer at 8.4 s TWT depth (9.4 km depth) may have a sedimentary origin because of
its layered facies [Le Meur, 1997]. Analysis of the Archimede (Figure 3a) and PrisMed01
profiles (Figure 4) confirms this layered facies and the 4.7-5 km/s velocity layer (Figure 3b),
called ambiguous unit, may have a sedimentary origin. The thickness of the resulting oceanic
crust recognized beneath the IAP is then 7.2 km thick (Figure 3f) [Le Meur, 1997], more

consistent with the thickness of typical oceanic crust [White, et al., 1992].



3-2.Deformation of the sediments beneath the Ionian Abyssal Plain

Beneath the Ionian Abyssal Plain, the entire sedimentary sequence is deformed. However,
deformation occurs as the consequence of two decoupled tectonic processes. First, a thin
skinned SE vergent thrust faulting affected the Messinian Mobile and Upper Units and the
Plio-Quaternary deposits, which are accreted to the Calabrian prism. Second, a thick skinned

(crustal scale) NW vergent reverse faulting, which affects the pre-evaporitic deposits.

Northwest of the lonian Abyssal Plain, we observe closely spaced SE vergent thrusts (Figure
4a, s.p. 4000 to 5300). These lead to anticlinal folding and thrusting of the Messinian Mobile
and Upper Units and of the Plio-Quaternary sediments (Figure 6) [Chamot-Rooke, et al.,
2005; Minelli and Faccenna, 2010]. The base of the Messinian Mobile Unit was interpreted as
the basal decollement in the frontal part of the post-Messinian Calabrian wedge, thus the post-
evaporitic (Messinian Mobile Unit) sediments are accreted to the Calabrian prism above the
B-reflector (Figure 4a) [Chamot-Rooke, et al., 2005; Minelli and Faccenna, 2010]. Successive
imbricate thrusting and some back-thrusting within the Calabrian prism allow a doubling of

the thickness of this sequence within 30 km of the deformation front (Figure 4a).

Beneath the Ionian Abyssal Plain, large-scale anticlines affect the entire sedimentary cover
from the oceanic basement to the B-reflector, at the base of the Messinian Mobile Unit
(Figures 4, 5 and 6). The geometry of these anticlines with short and steep forelimbs (Figures
4 and 5) and a significant vertical offset of the top of oceanic basement (e.g. fault F5: Figures

4,s.p. 5750 and 5, s.p. 3060) allows us to define a set of reverse crustal faults. The activity of



these 60 to 65° dipping faults led to the development of basins over 1 km in thickness
(Figures 4c and Sc, the dark red reflectors). They are filled with the Tortonian syntectonic
unit, which exhibits an onlapping growth strata facies (Figures 4 and 5). These Tortonian
sediments were deposited synchronously to the fault activity. The seismic velocities for these
sediments (2.6 to 2.8 km/s) are particularly low for strata at 6 km depth, overlain by more than
1.5 km thick Messinian and Plio-Quaternary layer (Figures 4b and 5b). This low velocity
could be caused by high porosity and fluid overpressure in the sediments, which may reduce
the velocities of the sediments below the undisturbed impermeable evaporitic layer. This layer
(Messinian Mobile Unit) acts like a cap rock, which may lead to stagnation and subsequent
overpressure in the sediment below. We note that the internal velocities obtained during the
PSDM (Figures 4b and 5b) are slightly lower than the velocities obtained with the ESP 5
results (Figures 3b and 3d). This may be explained by anisotropy of sedimentary units in
response to the near-vertical propagation path in reflection seismic compared to the near
horizontal propagation path in refraction seismic, with approximately 10 % higher horizontal
velocities [Bartolome, et al., 2005]. On the depth seismic lines, the base of Messinian Mobile
Unit is slightly folded on top of the main NW vergent faults (F4, F5, F6 and F7, Figures 4 and
5). This implies that these crustal faults may have been active from the Tortonian,

characterized by syntectonic sedimentation to the early Messinian times.

The large vertical offset (reaching 1.5 km) of the top of the basement along major faults
allows us to establish a line to line correlations through the Ionian Abyssal Plain (Figure 6).
100 km long SW-NE trending faults are interpreted as crustal reverse faults, mostly NW
vergent and with a typical spacing of 10 to 20 km (Figures 4, 5 and 6). A series of NE-SW
trending morphologic highs (VHStr., VSH 2, NaStr., VaStr., Figure 2) and their control on the

depocenters of evaporites were pointed out by earlier seismic studies [Hieke, et al., 2005;



Hieke, et al., 2006]. The VHS Structure, the northward SW-NE trending prolongation of the
VHS 2, was interpreted as an extensional structure (a horst), formed by extension of
continental crust [Hieke, et al., 2005; Hieke, et al., 2006]. On the profiles, no Messinian
sediment is observed over the VHS 2, and a 880 m thick small evaporitic basin develops
between the Nathalie Structure and the VHS 2 (Figures 4 and 5). We confirm that the VHS 2
corresponds to structural highs formed mainly in the pre-Messinian times [Hieke, et al.,
2005]. Our seismic data clearly show that the VHS 2 and the Nathalie Structure are tectonic
pop-up structures, formed in response to the activity of the NW and SE associated vergent
faults F1/F2 and F3/F4, respectively (Figures 4, 5 and 6). In this compressive framework, the
Valvidia Structure corresponds to an anticlinal fold, formed in response to the activity of the
major 65° dipping and NW vergent fault F5 (Figures 4 and 5). After examination of the
seismic lines published on the VHS (see Figure 4e in [Hieke, et al., 2005; Hieke, et al., 2006],
we interpret it as a purely diapiric salt structure. Using trigonometry, the dip angle of the
faults and the offset of the top of oceanic crust, we estimate the shortening accommodated
beneath the Ionian Abyssal Plain. We show that on the PrisMedO1 line, 4.1 km of shortening
is accommodated over a 82 km broad area, corresponding to a bulk shortening of 5 %. On the
line Archimede 19, we find 3 km of shortening accommodated over a 85 km broad area,

equivalent to a bulk shortening of 3.5 %.

The free-air gravity anomaly also provides constraints on the deep crustal structure beneath
the Tonian Abyssal Plain (Figure 7), where more than 5 km of sediments are deposited (Figure
4) (Version 16.1 of [Sandwell and Smith, 2009] and references inside). The free-air gravity
anomaly clearly reveals SW-NE trending features in the southern Ionian Abyssal Plain,
characterized by high value of gravity anomaly (Figure 7). The Medina Seamounts show the
highest value (> 50 mgal) and a clear prolongation of the Medina Seamounts is expressed in

the gravity anomaly through the VHS 2 to the Nathalie Structure (Figure 7). These high



values suggest the presence of excess mass at depth directly beneath the morphologic highs
and subbottom structures. The free-air gravity anomaly map confirms the basement
involvement of the NE-SW trending structures described above. We suggest that the mass

excess may also be related to a local tectonic uplift of the Moho.

To conclude, two decoupled types of compressive deformation are clearly expressed beneath
the Ionian Abyssal Plain and are decoupled: recent accretion above the B-reflector forming
the Calabrian prism NW of the IAP, and an older episode of large-scale crustal deformation,
expressed as SW-NE trending reverse faults, associated with morphologic highs. Using the
constraints offered by the seismic stratigraphy and the paleogeographic reconstructions of the
Ionian basin, we will now discuss the origin of these reverse faults and the timing of their

activity.

4-Discussion

4-1.0Origin of the deep reverse faults beneath the Ionian Abyssal Plain

A major question raised by this study: What is the origin of the faults, which have been
reactivated beneath the Ionian Abyssal Plain? Within the framework of existing
paleogeographic models for the evolution of the Mediterranean basins, different hypotheses
can be proposed: (a) flexural bending faults, (b) transform faults or (c) normal faults related to

sea-floor spreading of the Ionian basin.



(a) Outboard of subduction zones, a flexural bulge develops on the subducting plate, which
can produce extensional bending faults. Such normal faults typically form approximately 50
to 100 km away from the trench. We show that the reactivation of the 55°N trending faults
occurred in the Tortonian times, with the development of syntectonic basins (see paragraph
3.2). During the Tortonian, the front of the Ionian subduction was located several hundred km
further to the NW (Figure 7) [Faccenna, et al., 2001]. Any normal bending faults, which may
have been formed on the downgoing plate during the Tortonian would have been already

consumed by the subduction processes. Thus, this hypothesis can be discarded.

(b) In Central Mediterranean, the Malta escarpment (Figure 1) was for a long time considered
as part of a passive margin separating the continental domain of Sicily and of the Pelagian Sea
from the deep Ionian oceanic basin [Scandone, et al., 1981; Jongsma, et al., 1985; Jongsma,
et al., 1987; Groupe Escarmed, et al., 1988; Catalano, et al., 2001; Argnani and Bonazzi,
2005]. Some researchers interpreted the Apulian escarpment (Figure 1) to be the conjugate of
the Malta escarpment and thus that the lonian Sea had opened in a NE-SW direction
[Catalano, et al., 2001; Chamot-Rooke, et al., 2005]. According to this framework, the 55°N
trending set of faults we have identified would be almost parallel to the opening direction and
could correspond to a pattern of transform faults. We show that the pattern of faults beneath
the IAP dips at 60-65° and was reactivated. Oceanic transforms faults are typically sub-
vertical faults [De Long, et al., 1977], and thus would be very difficult to reactivate in a
perpendicular compressive stress field. So both the geometry of the fault pattern beneath the

IAP and its reactivation are in disagreement with the hypothesis of a transform fault origin.

(c) Very recently, it was proposed that the lonian basin opened NW-SE following a late
Triassic-early Jurassic rifting [Frizon de Lamotte, et al., 2011; Raulin, et al., 2011]. The SW-
NE orientation of the fault pattern beneath the IAP suggests that it could initially formed as

normal faults during the spreading of the Ionian basin. After comparison of this fault pattern



with the Atlantic and Indian oceanic fabrics, the oceanic nature of the Ionian basin [de Voogd,
et al., 1992] together with fault dip (60-65°) are clearly consistent with a normal fault origin
[Sykes, 1967; Choukroune, et al., 1984; Bull and Scrutton, 1992]. The fault spacing (20 km) is
also in good agreement with the observed oceanic fabric morphology observed in the Canary
basin [Ranero and Banda, 1997] and in the West Philippine basin, adjacent to an abandoned
spreading axis [Deschamps, et al., 2002]. We propose that the fault pattern beneath the IAP
was initially a set the SW-NE trending oceanic normal faults, formed during the NW-SE

opening of the Ionian basin [Frizon de Lamotte, et al., 2011; Raulin, et al., 2011].

According to this framework, the Malta escarpment would be part of a continental transform
margin separating the continental domain of Sicily and of the Pelagian Sea from the deep
Ionian oceanic basin [Frizon de Lamotte, et al., 2011]. The abrupt crustal thinning across the
escarpment (from 30 to 10 km) [Makris, et al., 1986] and the presence of only few titled
blocks [Nicolich, et al., 2000] along this escarpment is consistent with a transform fault origin
[De Long, et al., 1977; Mascle and Basile, 1988]. The ocean/continent transition is considered
to occur 50 km eastward of the Malta escarpment [Chamot-Rooke, et al., 2005], this suggests
that the crustal thinning towards the Ionian basin occurs within a narrow region. This is also
in good agreement previous observations of continental transform margins [Benkhelil, et al.,
1988; Mascle and Basile, 1988; Edwards, et al., 1997; Lamarche, et al., 1997; Sage, et al.,
1997; Sallarés, et al., in press]. The NNW-SSE trending Malta escarpment may be the
expression of an initial rifting setting as a transform margin during the Triassic-Jurassic rifting
of the lonian basin (Figure 8). The increase of the heat flow measurements at the northern
edge of the Medina Seamounts, just southeast of the Malta escarpment, also suggests that a
transition in the nature of the basement occurs (Figure 1 from [Pasquale, et al., 2005]). The

seafloor morphology of the Medina Seamounts, characterized by “en echelon” features, with a



stair-case pattern alternating between NNW-SSE trending elements and WSW-ENE trending

segments (Figure 2) is also consistent with a Gondwana rifted margin (Figure 7).

Following all these points, we conclude that the SW-NE trending faults beneath the IAP are
crustal remnant faults of the NW-SE Ionian oceanic spreading, that occurs in a continental

transform margin framework along the Malta escarpment.

4-2.Intraplate deformation beneath the Ionian Abyssal Plain

We show that the set of deep reverse faults present beneath the IAP is a remnant of the
seafloor spreading fabric formed during the Jurassic-Cretaceous NW-SE opening of the Ionian
basin (Figure 8) [Frizon de Lamotte, et al., 2011]. But we also clearly show that on the
seismic lines, the activity of these crustal scale features led to the formation of anticlines and
Tortonian syntectonic basins. In the following, we will discuss the possibility to inverting an

oceanic domain under compressive stress and the timing of the inversion.

Based on the plate tectonic model, it was assumed that the rigid oceanic lithosphere, with
respect to continental lithosphere, would remain relatively undeformed during its growth and
destruction. However, during tectonic inversion normal and transform faults originally formed
at spreading centers may be reactivated in areas of diffuse intraplate deformation [Delescluse,
et al., 2008]. This reverse reactivation of normal faults during basin inversion have been
studied by analogue modeling studies [Koopman, et al., 1987; Mandal and Chattopadhyay,
1995; Konstantinovskaya, et al., 2007]. These studies conclude that the inversion of normal
faults is feasible and depends on their initial geometry and orientation with respect to the
direction of compression [Mandal and Chattopadhyay, 1995; Konstantinovskaya, et al.,

2007]. Theoretical analyses show that the fluid pressure may greatly enhance reactivation by



lowering the resistance along the fault zone [Etheridge, 1986]. We consider that the high-
amplitude of the reflectors beneath the IAP and the low internal velocity are also a sign of the
presence of fluids, which may have played a role during the reactivation of the original

oceanic fabric (see paragraph 3.2).

The Central Indian Ocean basin is the best documented area, where intraplate deformation
occurs under compressive stress [Bull and Scrutton, 1992; Delescluse, et al., 2008]. Multi-
channel seismic images of the Central Indian Ocean basin allow the identification of
reactivated paleo-normal faults, with a characteristic fault-block width of 5 to 20 km [Bull and
Scrutton, 1992]. A set of north-dipping reverse basement faults is observed with characteristic
hanging-wall anticlines. Their dips range from 30-40° in the basement with a rapid increases
to dips > 65° in the sedimentary cover. This fault pattern is interpreted to be the result of
reactivation of pre-existing normal faults originally formed at the spreading center [Bull and
Scrutton, 1992]. In the Ionian basin, the fault spacing (10 to 20 km) together with the steep
fault dips of the fault (60 to 65°) allow us to propose a similar evolution: an Ionian seafloor
spreading fabric, acquired during the Jurassic-Cretaceous opening of the basin and reactivated
latter during the Tortonian-early Messinian times (Figure 8). Recent numerical modeling
shows that the entire fault network formed at the Central Indian Ocean ridge axis was initially
reactivated, but that only a small fraction of these faults remained active through time and
accumulated significant displacements [Delescluse, et al., 2008]. These long-lived major,
active faults bound blocks, which are modeled at a spacing of 20 to 30 km [Delescluse, et al.,
2008], in good agreement with seismic lines [Bull and Scrutton, 1992]. The 20 km spacing
faults pattern of the IAP fits well with modeling results obtained for the Central Indian Ocean
[Delescluse, et al., 2008]. Beneath the IAP, our dataset suggests that the overall set of faults

may have been active during the early stage of the reactivation during the Tortonian (Figures



4 and 5). Latter, it seems that a selective abandonment of the faults called “F...bis” occurs in
early Messinian times during the deposit of Messinian Lower Unit (Figure 7). In fact, on top
of these faults, the base of Messinian Mobile Unit is not folded. Only some major faults
(faults “F...”) show significant evidence of long-lived activity. The compression along the
major faults (referred as F4, F5 and F6) led to the development of 1 km thick Tortonian
syntectonic basins, and folding of the base of the Messinian Mobile Unit (Figures 4 and 5).
The fault activity seems to stop or slow down after the early Messinian, since no deformation

1s observed in late Messinian sediments.

4-3.Causes of intraplate deformation of the Ionian basin

In this section, we will discuss the possible causes of this intraplate deformation and its
significance within the framework of the evolution of the Central Mediterranean. Based on the
evolution of the Ionian adjacent area, different causes can be invoked to explain the
compressive reactivation of oceanic fabric of the lonian basin: (a) the Alpine collision, (b) the

Southeastward drift of Calabria, (c) the motion of an independent Ionian microplate.

(a) On the basis of seismic correlations from the Gulf of Sirte to the lonian Abyssal Plain, the
refracted arrivals at 6.7 s TWT depth was proposed to correspond to the top of the Mesozoic
(Figure 3b) [de Voogd, et al., 1992]. These authors outlined that these correlations were made
with “less certainty” for the data located beneath the Ionian Abyssal Plain [de Voogd, et al.,
1992; Sioni, 1996]. This led other authors to propose the reflector at 6.6 STWT to be the top of
the Mesozoic sequence, and imply that the syntectonic sediments have to be older than the

Tortonian [Sioni, 1996; Minelli and Faccenna, 2010]. Then, the tectonic reactivation was



proposed to be caused by a narrowing of this Mediterranean domain in response to the Alpine
collision in the pre-Miocene times [Sioni, 1996]. However, we follow the first seismic
interpretation proposed for the top of the Mesozoic (paragraph 3.1), identified at 7.25 s TWT
depth [Finetti and Morelli, 1972]. So we discard the Alpine collision hypothesis for the

observed deformation beneath the Ionian Abyssal Plain

(b) Other seismic facies correlations, established East of the Malta escarpment [Cernobori, et
al., 1996, Chamot-Rooke, et al., 2005] led to an interpretation of the Messinian Lower Unit
together with the Tortonian syntectonic unit of this study (see paragraph I11.1) as a single
syntectonic Tortonian-Serravallian unit [Chamot-Rooke, et al., 2005]. After careful
interpretations, we propose that the unit below the Messinian Mobile Unit also corresponds to
Messinian sediments (Figure 3a) [Lofi, et al., 2011a]; and that only the sediments deposited in
sub-basins are syntectonic. The consequence is the same age of initial reactivation (Tortonian)
(Figure 8), but a reduced sedimentary record of the inversion of the Ionian basin. We also
show that the base of the Messinian Mobile Unit is folded. Therefore, the tectonic inversion
has continued at least until the early Messinian times (Figure 8). The timing of this inversion

is consistent with the geodynamic evolution of the Western Mediterranean domain.

After the cessation of the counterclockwise rotation of the Corsica-Sardinia block around 15
Ma, a period of tectonic reorganization occurred [Malinverno and Ryan, 1986; Faccenna, et
al., 2004]. Soon afterwards more rapid NW subduction and related to the SE directed roll-
back of the Ionian slab occurred together with the opening of the Tyrrhenian Sea in the
Miocene [Malinverno and Ryan, 1986; Gueguen, et al., 1998; Jolivet and Faccenna, 2000;
Faccenna, et al., 2001; Chiarabba, et al., 2008]. We propose that the Tortonian-early

Messinian inversion occurred during this reorganization phase (Figure 8). Then the



accommodation of both the compression due to the slab roll-back of the Calabrian block and
the subduction of the Ionian lithosphere was partly transferred to the Ionian basin, reactivating

the inherited oceanic fabric.

(c) Based on GPS results, a current intraplate deformation of an Ionian microplate cannot be
excluded, in particular North of the Ionian Abyssal Plain [Anzidei, et al., 1996]. Based on the
lack of seismicity and the absence of deformation in the Plio-Quaternary deposits along the
Apulian escarpment, newly published GPS data support the interpretation that Apulia together
with the Ionian Sea form a single microplate [D'Agostino, et al., 2008; D'Agostino, et al.,
2011]. This Ionian-Apulian microplate is rotating relative to Nubia, around the GPS-derived
Eulerian pole located in the Gulf of Sirte (Figure 1) [D'Agostino, et al., 2008]. This rotation
accommodates a fraction of the convergence between Africa and Eurasia and may still drive
limited intraplate compression beneath the Ionian Abyssal Plain [Jongsma, et al., 1985;
Jongsma, et al., 1987]. We are not able to discard the hypothesis of persistent activity of this
network of faults beneath the IAP on the basis of multi-channel seismic data. Further GPS

measurement may offer a chance to better discuss the present-day activity of these faults.

To conclude, we wish to emphasize that the proposed timing of the inversion of the lonian
basin is controlled by the answer to the crucial question: “What is the age of the syntectonic
unit?”, without direct evidence from drill hole. We argue that the syntectonic units are
Tortonian sediments, and suggest the inversion of the lonian basin may be linked to a plate
reorganization at that times. On the basis of the recent GPS, ongoing but less vigorous

compression cannot be ruled out.



5-Conclusions

In this study, we analyzed a set multichannel seismic profiles (Archimede and PrisMed
cruises). These seismic images reveal a set of well-developed N55°E striking large-scale,
reverse faults primarily NW vergent and linked to hanging-wall anticlines beneath the lonian
Abyssal Plain. A comparison with the best-documented oceanic intraplate deformed area, the
Central Indian Ocean leads us to interpret that this set of 10 to 20 km spaced crustal reverse
faults as reactivated normal faults. In agreement with very recent paleogeographic studies, we
propose that the fault pattern of the lonian basin formed as a seafloor spreading fabric
acquired after the late Triassic-early Jurassic rifting setting as a transform margin along the
Malta escarpment. This study also leads to the interpretation of a new stratigraphic succession
over the oceanic crust beneath the Ionian Abyssal Plain. In the Central Mediterranean domain,
the identification of a Messinian Lower Unit, previously identified as Tortonian in age, leads
to a revision in the timing of the inversion of the lonian basin. We propose that these 60 to 65°
dipping inherited normal faults were reactivated as reverse faults during the Tortonian,
forming syntectonic basins. The folding of the base Messinian Mobile Unit suggests
continued but reduced activity of some major faults until the early Messinian. Our results
indicate a total shortening of 3-4 km distributed over a NW-SE 80 km wide and a NE-SW 200
km long zone with a bulk shortening of 3.5-5 %, values characteristic for diffuse intra-plate
deformation. This deformation of the Ionian domain is interpreted to be related to a plate
tectonic reorganization prior to the rapid southward drift of Calabria, associated with the main
phase of back-arc opening of the Tyrrhenian domain. Based on recent GPS studies, the
independent rotation of a Ionian-Apulian microplate in the Central Mediterranean may cause

residual minor deformation beneath the IAP.
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Figure 1: Seismotectonic map of the Central Mediterranean area (Topography and bathymetry
are from GEBCO 1 min dataset and Medimap Group Bathymetry compilation [Loubrieu, et
al., 2007]). Black lines show major fault systems (modified from the Geodynamic Map of the

Mediterranean (Commission for the Geological Map of the World, http://ccgm.free.fr) and

offshore regions beneath the Pelagian Sea from [Raulin, et al., 2011]). Earthquake
hypocenters are from the National Earthquake Information Center (NEIC) catalog
(http://neic.usgs.gov). Magenta arrows show the convergence between Africa and Eurasia
according to the NUVEL-1A model [DeMets, et al., 1994] and the GPS pole of rotation
proposed by [D'Agostino, et al., 2008]. White point surrounded by curved white arrow: the
Eulerian pole of rotation nuQap+1y indicates the poles of rotation relative to Nubia (Nu),
obtained considering Apulia (Ap) and the Hyblean Plateau (Hy) as a single microplate
[D'Agostino, et al., 2008]. Thin white lines: position of the Archimede seismic cruise (1997,
R/V Le Nadir) and thin orange line: position of the line PrisMed01 acquired during the

PrisMed cruise (1993, R/V Le Nadir). Study area (shown in Figures 2 and 6): white square.

Figure 2: Bathymetry and location map: The lonian Abyssal Plain is roughly defined by the
4000 m depth isobaths (thick white contour). Triangles: heat flow values [Pasquale, et al.,
2005]. White circle: position of the DSDP Site 374 [Hsd, et al., 1978] and magenta stars :
position of the ESP [de Voogd, et al., 1992]. The main structural features are indicated:
NaStr.: Nathalie Structure, VaStr: Valvidia Structure, VHS: Victor Hensen Seahill, VHS2:
Victor Hensen Seahill 2 (nomenclature from [Hieke, et al., 2005]). Thick orange lines

indicates the profiles shown in the following figures.


http://ccgm.free.fr/

Figure 3: Stratigraphy beneath the Ionian Abyssal Plain, identified by published multi-channel
seismic reflection profiles (¢) to (e) [Finetti and Morelli, 1972; Hieke, et al., 2005; Minelli
and Faccenna, 2010], correlated with the ESP 5 velocity model (b) and (e) [de Voogd, et al.,
1992; Le Meur, 1997]. Note that the stratigraphy shown is the original interpretation and these
are presented for this study at the same vertical scale in s TWT. (a) Left side: example of the
line Archimede 21 (Arc-21), with stratigraphy and main reflectors identified in this study (the
D1-reflector and D2-reflector defined by [Sioni, 1996]). PQ: Plio-Quaternary unit; ME:

Messinian unit; PM: Pre-Messinian.

Figure 4: Zoom on the pre-stack depth migrated PrisMedO1 profile (no vertical exageration).
A- On the line drawing, see: 1- the thin skinned SE vergent thrust faulting caused by the
accretion of post-evaporitic (Messinian Mobile Unit) deposits, forming the Calabrian prism
(s.p- 5300 (deformation front) to 4000); 2- the thick skinned (crustal scale) NW vergent
reverse faulting (s.p. 4800 to 6400); B- Portion of the profile PrisMed01 line in depth (with
the internal velocity model obtained during depth migration); C- Line drawing of the extract
showing the geometry of the reverse faults, with dips ranging from 60 to 65°. Note the
presence of a well-developped Tortonian syntectonic basins (dark red reflectors, s.p. 5500 to
5750 and s.p. 5825 to 5900) and their link with the morphologic highs (Nathalie and Valvidia

Structures and VHS 2).

Figure 5: Zoom on the pre-stack depth migrated Archimede 19 profile (no vertical
exageration). A- On the line drawing, see: 1- the thin skinned SE vergent thrust faulting
caused by the accretion of post-evaporitic (Messinian Mobile Unit) deposits, forming the

Calabrian prism (s.p. 2220 (deformation front) to 1500); 2- the thick skinned (crustal scale)



NW vergent reverse faulting (s.p. 3750 to 1900); B- Portion of the profile Archimede 19 line

in depth (with the internal velocity model obtained during depth migration); C- Line drawing
of the extract showing the geometry of reverse faults, with dips ranging from 60 to 65°. Note

the presence of a well-developped Tortonian syntectonic basins (dark red reflectors, s.p. 2750
to 2900 and s.p. 2800 to 3100) and their link with the morphologic highs (Nathalie and

Valvidia Structures and VHS 2).

Figure 6: Portions of the Archimede 05 and 21 profiles (time migrated) showing the
morphologic highs and their link to the mostly NW vergent reverse faults (Vertical
exaggeration 6, see position Figure 2). Note the homogenous geometry of the fault pattern

through the IAP, which allows the line to line correlation.

Figure 7: Tectonic map of the lonian Abyssal Plain showing the N55°E striking deep faults
primarily NW vergent (red lines) beneath the Ionian Abyssal Plain. The position of the
deformation fronts of the Calabrian prism and Western Mediterranean Ridge are shown in
green (interpreted from the seismic lines). The free-air gravity anomaly is shown using the
rainbow color scale (Version 16.1, see [Sandwell and Smith, 2009] for references) and the
bathymetric contours (each 500 m) in black, with the crustal highs (GEBCO 1 min and
Medimap Group Bathymetry compilation [Loubrieu, et al., 2007]). Thick orange lines

indicates the profiles shown in the paper.

Figure 8: Tectonic sketches of the NW-SE rifting of the Ionian basin during the Triassic-

Jurassic times and the subsequent spreading (bottom) and six schematic SE-NW cross-



sections showing the evolution the lonian basin, North of the Gondwana (Africa) margin from

the Jurassic-Cretaceous to the Present (top).
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