109 research outputs found

    Thermal equilibrium in Einstein's elevator

    Get PDF
    We report fully relativistic molecular-dynamics simulations that verify the appearance of thermal equilibrium of a classical gas inside a uniformly accelerated container. The numerical experiments confirm that the local momentum distribution in this system is very well approximated by the J\"uttner function -- originally derived for a flat spacetime -- via the Tolman-Ehrenfest effect. Moreover, it is shown that when the acceleration or the container size is large enough, the global momentum distribution can be described by the so-called modified J\"uttner function, which was initially proposed as an alternative to the J\"uttner function

    Particle transport across a channel via an oscillating potential

    Get PDF
    Membrane protein transporters alternate their substrate-binding sites between the extracellular and cytosolic side of the membrane according to the alternating access mechanism. Inspired by this intriguing mechanism devised by nature, we study particle transport through a channel coupled with an energy well that oscillates its position between the two entrances of the channel. We optimize particle transport across the channel by adjusting the oscillation frequency. At the optimal oscillation frequency, the translocation rate through the channel is a hundred times higher with respect to free diffusion across the channel. Our findings reveal the effect of time dependent potentials on particle transport across a channel and will be relevant for membrane transport and microfluidics application

    Statistical Thermodynamics of Polymer Quantum Systems

    Full text link
    Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermodynamics of two one dimensional {\em polymer} quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal gas. We first study the spectra of these polymer systems. It turns out useful for the analysis to consider the length scale required by the quantization and which we shall refer to as polymer length. The dynamics of the polymer oscillator can be given the form of that for the standard quantum pendulum. Depending on the dominance of the polymer length we can distinguish two regimes: vibrational and rotational. The first occur for small polymer length and here the standard oscillator in Schr\"odinger quantization is recovered at leading order. The second one, for large polymer length, features dominant polymer effects. In the case of the polymer particles in the box, a bounded and oscillating spectrum that presents a band structure and a Brillouin zone is found. The thermodynamical quantities calculated with these spectra have corrections with respect to standard ones and they depend on the polymer length. For generic polymer length, thermodynamics of both systems present an anomalous peak in their heat capacity CVC_V

    Fick-Jacobs description and first passage dynamics for diffusion in a channel under stochastic resetting

    Full text link
    Transport of particles through channels is of paramount importance in physics, chemistry and surface science due to its broad real world applications. Much insights can be gained by observing the transition paths of a particle through a channel and collecting statistics on the lifetimes in the channel or the escape probabilities from the channel. In this paper, we consider the diffusive transport through a narrow conical channel of a Brownian particle subject to intermittent dynamics, namely, stochastic resetting. As such, resetting brings the particle back to a desired location from where it resumes its diffusive phase. To this end, we extend the Fick-Jacobs theory of channel-facilitated diffusive transport to resetting-induced transport. Exact expressions for the conditional mean first passage times, escape probabilities and the total average lifetime in the channel are obtained, and their behaviour as a function of the resetting rate are highlighted. It is shown that resetting can expedite the transport through the channel -- rigorous constraints for such conditions are then illustrated. Furthermore, we observe that a carefully chosen resetting rate can render the average lifetime of the particle inside the channel minimal. Interestingly, the optimal rate undergoes continuous and discontinuous transitions as some relevant system parameters are varied. The validity of our one-dimensional analysis and the corresponding theoretical predictions are supported by three-dimensional Brownian dynamics simulations. We thus believe that resetting can be useful to facilitate particle transport across biological membranes -- a phenomena that can spearhead further theoretical and experimental studies

    La aplicación del Derecho a una alimentación adecuada en México según las obligaciones en el Derecho Internacional de los Derechos Humanos: caso de estudio Población Tarahumara

    Get PDF
    La presente investigación se desarrolla desde un enfoque del Derecho internacional de los derechos humanos que se complementa con estudios de otras disciplinas como la agroecología, la sociología y la etnología, y tiene como objetivo general coadyuvar a hacer efectivo el derecho a la alimentación adecuada (en adelante derecho a la alimentación) en México, a través del análisis del cumplimiento de las obligaciones internacionales. Para lograrlo se identifican las obligaciones del Estado Mexicano respecto al derecho a la alimentación de acuerdo al DIDH y se analiza la aplicación del derecho a la alimentación principalmente a través de las políticas públicas, definidas en un modelo desarrollado por Courtis como garantías políticas. Con el objetivo de profundizar sobre el derecho en cuestión en un grupo de población definida, estudiamos al pueblo rarámuri que habita la Sierra Tarahumara en relación con la transición de su dieta y la situación del derecho a la alimentación. A lo largo del documento y en cada tema se elaboran propuestas para mejorar las garantías políticas del derecho a la alimentación en México.Programa Oficial de Doctorado en Estudios Avanzados en Derechos HumanosPresidente: Fernando Mariño Menéndez; Secretario: Tania Gabriela Rodríguez Huerta; Vocal: Concepción Escobar Hernánde

    Blocker effect on diffusion resistance of a membrane channel. Dependence on the blocker geometry

    Full text link
    Being motivated by recent progress in nanopore sensing, we develop a theory of the effect of large analytes, or blockers, trapped within the nanopore confines, on diffusion flow of small solutes. The focus is on the nanopore diffusion resistance which is the ratio of the solute concentration difference in the reservoirs connected by the nanopore to the solute flux driven by this difference. Analytical expressions for the diffusion resistance are derived for a cylindrically symmetric blocker whose axis coincides with the axis of a cylindrical nanopore in two limiting cases where the blocker radius changes either smoothly or abruptly. Comparison of our theoretical predictions with the results obtained from Brownian dynamics simulations shows good agreement between the two

    Projection of two-dimensional diffusion in a curved midline and narrow varying width channel embedded on a curved surface

    Get PDF
    This study focuses on the derivation of a general effective diffusion coefficient to describe the twodimensional (2D) diffusion in a narrow and smoothly asymmetric channel of varying width that lies on a curved surface, in the simple diffusional motion of noninteracting point-like particles under no external field. To this end we extend the generalization of the Kalinay-Percus’ projection method [J. Chem. Phys. 122, 204701 (2005); Phys. Rev. E 74, 041203 (2006)] for the asymmetric channels introduced in [J. Chem. Phys. 137, 024107 (2012)], to project the anisotropic 2D diffusion equation on a smooth curved manifold into an effective one-dimensional generalized Fick-Jacobs equation which is modified due to the curvature of the surface. The lowest order in the perturbation parameter, corresponding to the Fick-Jacobs equation, contains an extra term that accounts for the curvature of the surface. We found explicitly the first order correction for the invariant effective concentration, which is defined as the correct marginal concentration in one variable, and we obtain the first approximation to the effective diffusion coefficient analogous to Bradley’s coefficient [Phys. Rev. E 80, 061142 (2009)] as a function of metric elements of the surface. Straightforwardly we study the perturbation series up to the n-th order, and we derive the full effective diffusion coefficient for 2D diffusion in a narrow asymmetric channel, which have modifications due to the curved metric. Finally, as an example we show how to use our formula to calculate the effective diffusion coefficient considering the case of an asymmetric conical channel embedded on a torus
    corecore