214 research outputs found

    Structural basis for SH3 domain-mediated high-affinity binding between Mona/Gads and SLP-76

    Full text link

    Correlative 3D cryo X-ray imaging reveals intracellular location and effect of designed antifibrotic protein-nanomaterial hybrids

    Get PDF
    Revealing the intracellular location of novel therapeutic agents is paramount for the understanding of their effect at the cell ultrastructure level. Here, we apply a novel correlative cryo 3D imaging approach to determine the intracellular fate of a designed protein-nanomaterial hybrid with antifibrotic properties that shows great promise in mitigating myocardial fibrosis. Cryo 3D structured illumination microscopy (cryo-3D-SIM) pinpoints the location and cryo soft X-ray tomography (cryo-SXT) reveals the ultrastructural environment and subcellular localization of this nanomaterial with spatial correlation accuracy down to 70 nm in whole cells. This novel high resolution 3D cryo correlative approach unambiguously locates the nanomaterial after overnight treatment within multivesicular bodies which have been associated with endosomal trafficking events by confocal microscopy. Moreover, this approach allows assessing the cellular response towards the treatment by evaluating the morphological changes induced. This is especially relevant for the future usage of nanoformulations in clinical practices. This correlative super-resolution and X-ray imaging strategy joins high specificity, by the use of fluorescence, with high spatial resolution at 30 nm (half pitch) provided by cryo-SXT in whole cells, without the need of staining or fixation, and can be of particular benefit to locate specific molecules in the native cellular environment in bio-nanomedicine

    Compensation of x-ray mirror distortion by cooling temperature control

    Get PDF
    Synchrotron radiation is emitted from a bending magnet source in a wide ray fan which is collected by the first optical element in a beamline. In order to maximize angular acceptance, and hence flux, it is beneficial to increase the length of this mirror and optical design requirements may necessitate that the optical surface be over 1 m in length. Such mirrors also require cooling as they may be subject to high heat loads from the incident radiation. Two beamlines, B07 and B24, at Diamond Light Source, UK, use 1.4 m long toroidal mirrors which utilize a similar side-clamped cooling manifold design. While this scheme has been successful in providing effective cooling of the mirror, it has also been discovered that it introduces deformation of the radius of curvature which is sufficient to alter the focusing characteristics of the mirror. At both beamlines, the horizontal focus of the beam was found to differ by up to several meter from the design position at the exit slit which resulted in poor flux throughput, reduced energy resolution and other side effects. A pencil beam scan method has been used to diagnose this issue and infer the position of the focus and mirror shape. Through the use of a standalone chiller to alter the temperature of the water within the cooling loop, it has been possible to correct the distortion of the radius and restore the focus to its nominal position

    ARP

    Full text link

    The Huntington's disease mutation impairs Huntingtin's role in the transport of NF-κB from the synapse to the nucleus

    Get PDF
    Expansion of a polyglutamine (polyQ) tract in the Huntingtin (Htt) protein causes Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Loss of the normal function of Htt is thought to be an important pathogenetic component of HD. However, the function of wild-type Htt is not well defined. Htt is thought to be a multifunctional protein that plays distinct roles in several biological processes, including synaptic transmission, intracellular transport and neuronal transcription. Here, we show with biochemical and live cell imaging studies that wild-type Htt stimulates the transport of nuclear factor κ light-chain-enhancer of activated B cells (NF-κB) out of dendritic spines (where NF-κB is activated by excitatory synaptic input) and supports a high level of active NF-κB in neuronal nuclei (where NF-κB stimulates the transcription of target genes). We show that this novel function of Htt is impaired by the polyQ expansion and thus may contribute to the etiology of HD

    Identification of distinct cytotoxic granules as the origin of supramolecular attack particles in T lymphocytes

    Get PDF
    Cytotoxic T lymphocytes (CTL) kill malignant and infected cells through the directed release of cytotoxic proteins into the immunological synapse (IS). The cytotoxic protein granzyme B (GzmB) is released in its soluble form or in supramolecular attack particles (SMAP). We utilize synaptobrevin2-mRFP knock-in mice to isolate fusogenic cytotoxic granules in an unbiased manner and visualize them alone or in degranulating CTLs. We identified two classes of fusion-competent granules, single core granules (SCG) and multi core granules (MCG), with different diameter, morphology and protein composition. Functional analyses demonstrate that both classes of granules fuse with the plasma membrane at the IS. SCG fusion releases soluble GzmB. MCGs can be labelled with the SMAP marker thrombospondin-1 and their fusion releases intact SMAPs. We propose that CTLs use SCG fusion to fill the synaptic cleft with active cytotoxic proteins instantly and parallel MCG fusion to deliver latent SMAPs for delayed killing of refractory targets

    Single-cell chemistry of photoactivatable platinum anticancer complexes

    Get PDF
    The Pt(IV) prodrug trans, trans, trans-[Pt(pyridine)2(N3)2(OH)2] (Pt1) and its coumarin derivative trans, trans, trans-[Pt(pyridine)2(N3)2(OH)(coumarin-3-carboxylate)] (Pt2) are promising agents for photoactivated chemotherapy. These complexes are inert in the dark but release Pt(II) species and radicals upon visible light irradiation, resulting in photocytotoxicity toward cancer cells. Here, we have used synchrotron techniques to investigate the in-cell behavior of these prodrugs and visualize, for the first time, changes in cellular morphology and Pt localization upon treatment with and without light irradiation. We show that photoactivation of Pt2 induces remarkable cellular damage with extreme alterations to multiple cellular components, including formation of vacuoles, while also significantly increasing the cellular accumulation of Pt species compared to dark conditions. X-ray absorption near-edge structure (XANES) measurements in cells treated with Pt2 indicate only partial reduction of the prodrug upon irradiation, highlighting that phototoxicity in cancer cells may involve not only Pt(II) photoproducts but also photoexcited Pt(IV) species

    IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis

    Get PDF
    The authors thank Rafael Villasmil (NEI FLOW Cytometry Core facility) and Dr. Venkat Mohanram (Laboratory of Immunology, NEI, NIH) for assistance with FACS analysis. NIH/NEI Intramural grant ZIA EY000262-21 (CE) and NIH/NEI Intramural grant ZIA EY000184-34 (RC) provided funding for this Research. The Supplementary Material for this article can be found online at https://www.frontiersin.org/article/10.3389/fimmu.2017.01258/full#supplementary-material.Peer reviewedPublisher PD

    CryoSIM: super-resolution 3D structured illumination cryogenic fluorescence microscopy for correlated ultrastructural imaging

    Get PDF
    Rapid cryopreservation of biological specimens is the gold standard for visualizing cellular structures in their true structural context. However, current commercial cryo-fluorescence microscopes are limited to low resolutions. To fill this gap, we have developed cryoSIM, a microscope for 3D super-resolution fluorescence cryo-imaging for correlation with cryo-electron microscopy or cryo-soft X-ray tomography. We provide the full instructions for replicating the instrument mostly from off-the-shelf components and accessible, user-friendly, open-source Python control software. Therefore, cryoSIM democratizes the ability to detect molecules using super-resolution fluorescence imaging of cryopreserved specimens for correlation with their cellular ultrastructure.Funding: Wellcome Trust (091911/Z/11/Z, 096144/Z/11/Z, 105605/Z/14/Z, 107457/Z/15/Z, 203141/Z/16/Z, 209412/Z/17/Z); H2020Marie Skłodowska-Curie Actions (700184)
    corecore