9 research outputs found

    The effective force NL3 revisited

    Full text link
    Covariant density functional theory based on the relativistic mean field (RMF) Lagrangian with the parameter set NL3 has been used in the last ten years with great success. Now we propose a modification of this parameter set, which improves the description of the ground state properties of many nuclei and simultaneously provides an excellent description of excited states with collective character in spherical as well as in deformed nuclei.Comment: 8 pages, 5 figure

    Cranked Relativistic Hartree-Bogoliubov Theory: Formalism and Application to the Superdeformed Bands in the A190A\sim 190 region

    Full text link
    Cranked Relativistic Hartree-Bogoliubov theory without and with approximate particle number projection by means of the Lipkin-Nogami method is presented in detail as an extension of Relativistic Mean Field theory with pairing correlations to the rotating frame. Pairing correlations are taken into account by a finite range two-body force of Gogny type. The applicability of this theory to the description of rotating nuclei is studied in detail on the example of superdeformed bands in even-even nuclei of the A190A\sim 190 mass region. Different aspects such as the importance of pairing and particle number projection, the dependence of the results on the parametrization of the RMF Lagrangian and Gogny force etc. are investigated in detail. It is shown that without any adjustment of new parameters the best description of experimental data is obtained by using the well established parameter sets NL1 for the Lagrangian and D1S for the pairing force. Contrary to previous studies at spin zero it is found that the increase of the strength of the Gogny force is not necessary in the framework of Relativistic Hartree-Bogoliubov theory provided that particle number projection is performed.Comment: 34 pages, 24 figures, 3 tables, uses Revtex and epsf.sty, submitted to Nuclear Physics

    Shell Effects in Nuclei with Vector Self-Coupling of Omega Meson in Relativistic Hartree-Bogoliubov Theory

    Full text link
    Shell effects in nuclei about the stability line are investigated within the framework of the Relativistic Hartree-Bogoliubov (RHB) theory with self-consistent finite-range pairing. Using 2-neutron separation energies of Ni and Sn isotopes, the role of σ\sigma- and ω\omega-meson couplings on the shell effects in nuclei is examined. It is observed that the existing successful nuclear forces (Lagrangian parameter sets) based upon the nonlinear scalar coupling of σ\sigma-meson exhibit shell effects which are stronger than suggested by the experimental data. We have introduced nonlinear vector self-coupling of ω\omega-meson in the RHB theory. It is shown that the inclusion of the vector self-coupling of ω\omega-meson in addition to the nonlinear scalar coupling of σ\sigma-meson provides a good agreement with the experimental data on shell effects in nuclei about the stability line. A comparison of the shell effects in the RHB theory is made with the Hartree-Fock Bogoliubov approach using the Skyrme force SkP. It is shown that the oft-discussed shell quenching with SkP is not consistent with the available experimental data.Comment: 34 pages latex, 18 ps figures, replaced with minor corrections in some figures, accepted for publication in Phys. Rev.

    Continuum effects for the mean-field and pairing properties of weakly bound nuclei

    Get PDF
    Continuum effects in the weakly bound nuclei close to the drip-line are investigated using the analytically soluble Poschl-Teller-Ginocchio potential. Pairing correlations are studied within the Hartree-Fock-Bogoliubov method. We show that both resonant and non-resonant continuum phase space is active in creating the pairing field. The influence of positive-energy phase space is quantified in terms of localizations of states within the nuclear volume.Comment: 27 RevTeX pages, 12 EPS figures included, submitted to Physical Review
    corecore