103 research outputs found

    The Eulerian Distribution on Involutions is Indeed Unimodal

    Full text link
    Let I_{n,k} (resp. J_{n,k}) be the number of involutions (resp. fixed-point free involutions) of {1,...,n} with k descents. Motivated by Brenti's conjecture which states that the sequence I_{n,0}, I_{n,1},..., I_{n,n-1} is log-concave, we prove that the two sequences I_{n,k} and J_{2n,k} are unimodal in k, for all n. Furthermore, we conjecture that there are nonnegative integers a_{n,k} such that ∑k=0n−1In,ktk=∑k=0⌊(n−1)/2⌋an,ktk(1+t)n−2k−1. \sum_{k=0}^{n-1}I_{n,k}t^k=\sum_{k=0}^{\lfloor (n-1)/2\rfloor}a_{n,k}t^{k}(1+t)^{n-2k-1}. This statement is stronger than the unimodality of I_{n,k} but is also interesting in its own right.Comment: 12 pages, minor changes, to appear in J. Combin. Theory Ser.

    The derived moduli space of stable sheaves

    Full text link
    We construct the derived scheme of stable sheaves on a smooth projective variety via derived moduli of finite graded modules over a graded ring. We do this by dividing the derived scheme of actions of Ciocan-Fontanine and Kapranov by a suitable algebraic gauge group. We show that the natural notion of GIT-stability for graded modules reproduces stability for sheaves

    A good leaf order on simplicial trees

    Full text link
    Using the existence of a good leaf in every simplicial tree, we order the facets of a simplicial tree in order to find combinatorial information about the Betti numbers of its facet ideal. Applications include an Eliahou-Kervaire splitting of the ideal, as well as a refinement of a recursive formula of H\`a and Van Tuyl for computing the graded Betti numbers of simplicial trees.Comment: 17 pages, to appear; Connections Between Algebra and Geometry, Birkhauser volume (2013

    Counting matrices over finite fields with support on skew Young diagrams and complements of Rothe diagrams

    Full text link
    We consider the problem of finding the number of matrices over a finite field with a certain rank and with support that avoids a subset of the entries. These matrices are a q-analogue of permutations with restricted positions (i.e., rook placements). For general sets of entries these numbers of matrices are not polynomials in q (Stembridge 98); however, when the set of entries is a Young diagram, the numbers, up to a power of q-1, are polynomials with nonnegative coefficients (Haglund 98). In this paper, we give a number of conditions under which these numbers are polynomials in q, or even polynomials with nonnegative integer coefficients. We extend Haglund's result to complements of skew Young diagrams, and we apply this result to the case when the set of entries is the Rothe diagram of a permutation. In particular, we give a necessary and sufficient condition on the permutation for its Rothe diagram to be the complement of a skew Young diagram up to rearrangement of rows and columns. We end by giving conjectures connecting invertible matrices whose support avoids a Rothe diagram and Poincar\'e polynomials of the strong Bruhat order.Comment: 24 pages, 9 figures, 1 tabl

    Governing Singularities of Schubert Varieties

    Full text link
    We present a combinatorial and computational commutative algebra methodology for studying singularities of Schubert varieties of flag manifolds. We define the combinatorial notion of *interval pattern avoidance*. For "reasonable" invariants P of singularities, we geometrically prove that this governs (1) the P-locus of a Schubert variety, and (2) which Schubert varieties are globally not P. The prototypical case is P="singular"; classical pattern avoidance applies admirably for this choice [Lakshmibai-Sandhya'90], but is insufficient in general. Our approach is analyzed for some common invariants, including Kazhdan-Lusztig polynomials, multiplicity, factoriality, and Gorensteinness, extending [Woo-Yong'05]; the description of the singular locus (which was independently proved by [Billey-Warrington '03], [Cortez '03], [Kassel-Lascoux-Reutenauer'03], [Manivel'01]) is also thus reinterpreted. Our methods are amenable to computer experimentation, based on computing with *Kazhdan-Lusztig ideals* (a class of generalized determinantal ideals) using Macaulay 2. This feature is supplemented by a collection of open problems and conjectures.Comment: 23 pages. Software available at the authors' webpages. Version 2 is the submitted version. It has a nomenclature change: "Bruhat-restricted pattern avoidance" is renamed "interval pattern avoidance"; the introduction has been reorganize

    Actions on permutations and unimodality of descent polynomials

    Get PDF
    We study a group action on permutations due to Foata and Strehl and use it to prove that the descent generating polynomial of certain sets of permutations has a nonnegative expansion in the basis {ti(1+t)n−1−2i}i=0m\{t^i(1+t)^{n-1-2i}\}_{i=0}^m, m=⌊(n−1)/2⌋m=\lfloor (n-1)/2 \rfloor. This property implies symmetry and unimodality. We prove that the action is invariant under stack-sorting which strengthens recent unimodality results of B\'ona. We prove that the generalized permutation patterns (13−2)(13-2) and (2−31)(2-31) are invariant under the action and use this to prove unimodality properties for a qq-analog of the Eulerian numbers recently studied by Corteel, Postnikov, Steingr\'{\i}msson and Williams. We also extend the action to linear extensions of sign-graded posets to give a new proof of the unimodality of the (P,ω)(P,\omega)-Eulerian polynomials of sign-graded posets and a combinatorial interpretations (in terms of Stembridge's peak polynomials) of the corresponding coefficients when expanded in the above basis. Finally, we prove that the statistic defined as the number of vertices of even height in the unordered decreasing tree of a permutation has the same distribution as the number of descents on any set of permutations invariant under the action. When restricted to the set of stack-sortable permutations we recover a result of Kreweras.Comment: 19 pages, revised version to appear in Europ. J. Combi

    Generalizing Tanisaki's ideal via ideals of truncated symmetric functions

    Get PDF
    We define a family of ideals IhI_h in the polynomial ring Z[x1,...,xn]\mathbb{Z}[x_1,...,x_n] that are parametrized by Hessenberg functions hh (equivalently Dyck paths or ample partitions). The ideals IhI_h generalize algebraically a family of ideals called the Tanisaki ideal, which is used in a geometric construction of permutation representations called Springer theory. To define IhI_h, we use polynomials in a proper subset of the variables x1,...,xn{x_1,...,x_n} that are symmetric under the corresponding permutation subgroup. We call these polynomials {\em truncated symmetric functions} and show combinatorial identities relating different kinds of truncated symmetric polynomials. We then prove several key properties of IhI_h, including that if h>h′h>h' in the natural partial order on Dyck paths then Ih⊂Ih′I_{h} \subset I_{h'}, and explicitly construct a Gr\"{o}bner basis for IhI_h. We use a second family of ideals JhJ_h for which some of the claims are easier to see, and prove that Ih=JhI_h = J_h. The ideals JhJ_h arise in work of Ding, Develin-Martin-Reiner, and Gasharov-Reiner on a family of Schubert varieties called partition varieties. Using earlier work of the first author, the current manuscript proves that the ideals Ih=JhI_h = J_h generalize the Tanisaki ideals both algebraically and geometrically, from Springer varieties to a family of nilpotent Hessenberg varieties.Comment: v1 had 27 pages. v2 is 29 pages and adds Appendix B, where we include a recent proof by Federico Galetto of a conjecture given in the previous version. We also add some connections between our work and earlier results of Ding, Gasharov-Reiner, and Develin-Martin-Reiner. v3 corrects a typo in Valibouze's citation in the bibliography. To appear in Journal of Algebraic Combinatoric

    Matrix Schubert varieties and Gaussian conditional independence models

    Get PDF
    Seth Sullivant was partially supported by the David and Lucille Packard Foundation and the US National Science Foundation (DMS 0954865)

    Factoring the Poincaré Polynomials for the Bruhat Order onSn

    Get PDF
    • …
    corecore