Factoring the Poincaré Polynomials for the Bruhat Order on S_n

Vesselin Gasharov

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

/iew metadata, citation and similar papers at <u>core.ac.uk</u>

We consider the symmetric group S_n , whose elements are permutations written as words $w_1w_2 \cdots w_n$. It is a graded poset with the Bruhat order \leq . The Bruhat order was described combinatorially by Proctor [7]. We say that a set of numbers $\{a_1, ..., a_k\}$ is less than a set $\{b_1, ..., b_k\}$ if when the elements in the two sets are written in increasing order we have $a_i \leq b_i$ for $1 \leq i \leq k$. The following criterion is proved in [7]: Let $\mathbf{v}, \mathbf{w} \in S_n$, then $\mathbf{v} \leq \mathbf{w}$ if and only if for each $1 \leq i \leq n$ we have $\{v_i, ..., v_n\} > \{w_i, ..., w_n\}$. The rank of an element $\mathbf{w} \in S_n$ is called the *length* of \mathbf{w} and is denoted by $l(\mathbf{w})$. For $\mathbf{w} \in S_n$ consider the Poincaré polynomial $p_{\mathbf{w}}(t) = \sum_{\mathbf{v} \leq \mathbf{w}} t^{l(\mathbf{v})}$. We prove the following theorem; the proof of the only if direction is combinatorial:

THEOREM 1.1. Let $\mathbf{w} \in S_n$. The Poincaré polynomial $p_{\mathbf{w}}(t)$ factors into polynomials of the form $1 + t + t^2 + \cdots + t^r$ if and only if \mathbf{w} does not contain a subsequence $w_{i_1}w_{i_2}w_{i_3}w_{i_4}$ of 4 elements with the same relative order as 4231 or 3412.

The motivation for this result comes from Schubert varieties. Let *B* be the Borel subgroup of $SL_n(\mathbb{C})$ consisting of the upper triangular matrices. The Weyl group of type A is the symmetric group S_n . For $\mathbf{w} \in S_n$ let $X_{\mathbf{w}} = \overline{B\mathbf{w}B/B}$ be the Schubert variety of type A indexed by \mathbf{w} . Let $P_{\mathbf{w}}(t)$ be the Poincaré polynomial of the cohomology ring of $X_{\mathbf{w}}$. Then $P_{\mathbf{w}}(t) = p_{\mathbf{w}}(t^2)$. Lakshmibai and Sandhya [6] showed that $X_{\mathbf{w}}$ is smooth if and only if \mathbf{w} does not contain a subsequence $w_{i_1}w_{i_2}w_{i_3}w_{i_4}$ of 4 elements with the same relative order as 4231 or 3412.

Thus, Theorem 1.1 is equivalent to:

THEOREM 1.2. A Schubert variety of type A is smooth if and only if the Poincaré polynomial of its cohomology ring factors into polynomials of the form $\sum_{i=0}^{r} t^{2i}$.

As a referee pointed out, the "only if" assertion of Theorem 1.2 follows from Theorems 1 and 3 in [1]; the proofs of these theorems in [1] require Algebraic Geometry methods.

2. PROOF OF THEOREM 1.1

Let **w** be a permutation in S_n . Write $\mathbf{w} = \mathbf{w}' n \mathbf{w}''$. Let $\mathbf{u} = u_1 \cdots u_k$ be the subword of maximal length of **w** such that $u_1 = n$, u_2 is the largest number to the right of u_1 in **w**, u_3 is the largest number to the right of u_2 in **w**, ..., u_k is the largest number to the right of u_{k-1} in **w**. (Then $u_k = w_n$ is the rightmost element of \mathbf{w}'' and $u_1 > u_2 > \cdots > u_k$.) Fix **w**, **w**', **w**'', and **u** as above.

LEMMA 2.1. If $n\mathbf{w}''$ does not contain a subsequence of 4 elements with the same relative order as 4231, then for any $w_i \in n\mathbf{w}'' \setminus \mathbf{u}$ we have $w_i < u_k$.

Proof. Assume the contrary, i.e., there exists a $w_i \in n\mathbf{w}'' \setminus \mathbf{u}$ such that $w_i > u_k$. Suppose w_i is between u_j and u_{j+1} in $n\mathbf{w}''$. By the choice of \mathbf{u} it follows that $u_j > w_i < u_{j+1}$, so the subsequence $u_j w_i u_{j+1} u_k$ of $n\mathbf{w}''$ is order-equivalent to 4231, which is a contradiction.

LEMMA 2.2. If w does not contain a subsequence of 4 elements which is order-equivalent to 4231 or 3412 and there exists an element $w_i \in \mathbf{w}'$ such that $w_i > u_k$, then $\mathbf{u} = n\mathbf{w}''$, i.e., \mathbf{w}'' is a decreasing sequence.

Proof. Assume the contrary, i.e., there exists an element $w_j \in \mathbf{w}'' \setminus \mathbf{u}$. By Lemma 2.1 it follows that $w_j < u_k$, hence the subsequence $w_i n w_j u_k$ is order-equivalent to 3412, a contradiction.

DEFINITION 2.3. Denote by Sm_n the set of permutations in S_n which do not contain a subsequence of 4 elements which is order-equivalent to 4231 or 3412. Define a map $\phi_n : \text{Sm}_n \to S_{n-1}$ such that $\phi_n(\mathbf{w})$ is obtained from \mathbf{w} by deleting u_1 as an element of \mathbf{w} , replacing u_1 as an element of \mathbf{w} with u_2 , u_2 with $u_3, ..., u_{k-1}$ with u_k and leaving $\mathbf{w} \setminus \mathbf{u}$ unchanged. (Lemma 2.4 below shows that in fact ϕ_n is a map from Sm_n to Sm_{n-1} .)

LEMMA 2.4. If $\mathbf{w} \in \mathrm{Sm}_n$, then $\phi_n(\mathbf{w}) \in \mathrm{Sm}_{n-1}$.

Proof. Assume the contrary, i.e., $\mathbf{v} = \phi_n(\mathbf{w})$ contains a subsequence $v_{i_1}v_{i_2}v_{i_3}v_{i_4}$ which is order-equivalent to 4231 or 3412. If \mathbf{w}'' is a decreasing sequence, then \mathbf{v} is obtained from \mathbf{w} by simply removing n, so $v_{i_1}, v_{i_2}, v_{i_3}, v_{i_4}$ appear in \mathbf{w} in the same order as in \mathbf{v} , hence \mathbf{w} contains a sequence which is order-equivalent to 4231 or 3412, a contradiction. Therefore we can assume that \mathbf{w}'' is not a decreasing sequence. Then Lemmas 2.1 and 2.2 imply that for every $w_i \in \mathbf{w} \setminus \mathbf{u}$ we have $w_i < u_k$, hence $u_j = n - j + 1$ for $1 \le j \le k$. Write $\mathbf{v} = \mathbf{v}'(n-1) \mathbf{v}''$ and note that $(n-1) \mathbf{v}''$ is order-equivalent to $v_{i_1}w_{i_2}w_{i_3}w_{i_4}$ in \mathbf{w} is order-equivalent to $v_{i_1}v_{i_2}v_{i_3}v_{i_4}$, which is a contradiction. Hence we can assume that $v_{i_1} \in \mathbf{v}'$. We consider 2 cases:

Case 1. $v_{i_1}v_{i_2}v_{i_3}v_{i_4}$ is order-equivalent to 4231.

In this case $v_{i_1} > v_{i_2}, v_{i_3}, v_{i_4}$. Since $v_{i_1} \in \mathbf{v}'$, we have $v_{i_1} < u_k$, hence $v_{i_2}, v_{i_3}, v_{i_4} < u_k$. This implies that none of $v_{i_1}, v_{i_2}, v_{i_3}, v_{i_4}$ is in \mathbf{u} , hence $v_{i_1} = w_{i_1}, v_{i_2} = w_{i_2}, v_{i_3} = w_{i_3}, v_{i_4} = w_{i_4}$, so $w_{i_1}w_{i_2}w_{i_3}w_{i_4}$ is order-equivalent to 4231, a contradiction.

Case 2.
$$v_{i_1}v_{i_2}v_{i_3}v_{i_4}$$
 is order-equivalent to 3412.

Again $v_{i_1} < u_k$, hence $v_{i_3}, v_{i_4} < v_{i_1} < u_k$, so $v_{i_3}, v_{i_4} \notin \mathbf{u}$. Therefore $w_{i_1} = v_{i_1}$, $w_{i_3} = v_{i_3}$, and $w_{i_4} = v_{i_4}$. Also, $w_{i_2} = v_{i_2}$ if $v_{i_2} \notin \mathbf{u}$ and $w_{i_2} > v_{i_2}$ if $v_{i_2} \in \mathbf{u}$. This shows that $w_{i_2} > w_{i_1}, w_{i_3}, w_{i_4}$. Therefore the sequence $w_{i_1}w_{i_2}w_{i_3}w_{i_4}$ is order-equivalent to 3412, a contradiction.

LEMMA 2.5. Let $\mathbf{w} \in S_n$ and $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ be such that $w_{i_1} = n$, $w_{i_2} = n - 1, \dots, w_{i_k} = n - k + 1$. Let $\mathbf{\bar{w}}$ be the word obtained from \mathbf{w} by replacing each of w_{i_1}, \dots, w_{i_k} with n - k + 1. Then

$$p_{\mathbf{w}}(t) = p_{\bar{\mathbf{w}}}(t) \ p_{kk-1\dots 1}(t) = p_{\bar{\mathbf{w}}}(t) \prod_{i=1}^{k-1} (1+t+t^2+\dots+t^i).$$

Proof. Let $\mathbf{v} \in S_n$ be such that $\mathbf{v} \leq \mathbf{w}$. Let $v_{j_1} \cdots v_{j_k}$ be the subsequence of \mathbf{v} corresponding to $w_{i_1} \cdots w_{i_k}$, i.e., $v_{j_1} \cdots v_{j_k}$ is a permutation of $\{n, n-1, ..., n-k+1\}$. Denote by $\overline{\mathbf{v}}$ be the word obtained from \mathbf{v} by replacing each of $v_{j_1}, ..., v_{j_k}$ with n-k+1, so $l(\mathbf{v}) = l(\overline{\mathbf{v}}) + l(v_{j_1} \cdots v_{j_k})$. Since $\mathbf{v} \leq \mathbf{w}$, we conclude that $\overline{\mathbf{v}} \leq \overline{\mathbf{w}}$. Note also that $\overline{\mathbf{v}}$ and $v_{j_1}, ..., v_{j_k}$ are uniquely determined by \mathbf{v} and vice-versa. Let T be the set of pairs (σ, τ) , where σ is a permutation of the multiset $\{1, ..., n-k, n-k+1, ..., n-k+1\}$ in which n-k+1 appears k times, $\sigma \leq \overline{\mathbf{w}}$, and τ is a permutation of $\{n, n-1, ..., n-k+1\}$. The above discussion shows that the map

$$\begin{split} \psi : \left\{ \mathbf{v} \in S_n \mid \mathbf{v} \leqslant \mathbf{w} \right\} &\to \mathbf{7} \\ \mathbf{v} \mapsto (\bar{\mathbf{v}}, v_{j_1} \cdots v_{j_k}) \end{split}$$

is a bijection such that if $\psi(\mathbf{v}) = (\mathbf{\sigma}, \mathbf{\tau})$, then $l(\mathbf{v}) = l(\mathbf{\sigma}) + l(\mathbf{\tau})$. This shows that

$$p_{\bar{\mathbf{w}}}(t) = p_{\bar{\mathbf{w}}}(t) \ p_{nn-1, \dots, n-k+1}(t) = p_{\bar{\mathbf{w}}}(t) \ p_{kk-1, \dots, 1}(t)$$
$$= p_{\bar{\mathbf{w}}}(t) \prod_{i=1}^{k-1} (1+t+t^2+\dots+t^i),$$

which concludes the proof.

THEOREM 2.6. If $\mathbf{w} \in Sm_n$, then $p_{\mathbf{w}}(t) = (1 + t + t^2 + \dots + t^{k-1}) p_{\phi_n(\mathbf{w})}(t)$. *Proof.*

Case 1. $\mathbf{u} = n\mathbf{w}''$, i.e., \mathbf{w}'' is a decreasing sequence.

Let $\mathbf{v} \in S_n$ be such that $\mathbf{v} \leq \mathbf{w}$. Then

$$\{v_{n-k+1}, ..., v_n\} > \{w_{n-k+1}, ..., w_n\}.$$
(1)

Since $w_{n-k+1} = n$ it follows that $v_{n-k+l} = n$ for some l with $1 \le l \le k$. Let $\boldsymbol{\sigma}$ be the permutation in S_n obtained from \mathbf{v} by arranging the last k elements of \mathbf{v} in decreasing order. Then $\mathbf{v} \le \boldsymbol{\sigma}$ and $\sigma_{n-k+1} = n$. By (1) and the fact that \mathbf{w}'' is decreasing it follows that $\sigma_{n-k+i} \ge w_{n-k+i}$ for $1 \le i \le k$, hence $\{\sigma_{n-k+i}, ..., \sigma_n\} > \{w_{n-k+i}, ..., w_n\}$ for $1 \le i \le k$. Since $\{\sigma_j, ..., \sigma_n\} = \{v_j, ..., v_n\}$ for $1 \le j \le n-k$ and $\mathbf{v} \le \mathbf{w}$ it follows that $\{\sigma_j, ..., \sigma_n\} \ge \{w_j, ..., w_n\}$ for $1 \le j \le n-k$. Therefore $\boldsymbol{\sigma} \le \mathbf{w}$. Since $\boldsymbol{\sigma} \setminus n$ is obtained from $\mathbf{v} \setminus n$ by arranging the last k-1 elements of $\mathbf{v} \setminus n$ in decreasing order it follows that $\boldsymbol{\sigma} \setminus n \le \boldsymbol{\sigma} \setminus n$. Since n is in the same position in $\boldsymbol{\sigma}$ as in \mathbf{w} and $\boldsymbol{\sigma} \le \mathbf{w}$ it follows that $\boldsymbol{\sigma} \setminus n \le \mathbf{w} \setminus n$. This implies that $\mathbf{v} \setminus n \le \boldsymbol{\phi}_n(\mathbf{w})$. Note also that \mathbf{v} is uniquely determined by $\mathbf{v} \setminus n$ and l. This shows that the map

$$\psi : \{ \mathbf{v} \in S_n \mid \mathbf{v} \leq \mathbf{w} \} \to \{ (\tau, l) \mid \tau \in S_{n-1}, \tau \leq \phi_n(\mathbf{w}), 1 \leq l \leq k \}$$
$$\mathbf{v} \mapsto (\mathbf{v} \setminus n, l)$$

is a bijection such that if $\psi(\mathbf{v}) = (\tau, l)$, then $l(\mathbf{v}) = l(\tau) + k - l$. Therefore $p_{\mathbf{w}}(t) = (1 + t + t^2 + \dots + t^{k-1}) p_{\phi_n(\mathbf{w})}(t)$.

Case 2. $\mathbf{u} \neq n\mathbf{w}''$, i.e., \mathbf{w}'' is not a decreasing sequence.

In this case Lemmas 2.1 and 2.2 imply that for any $w_i \in \mathbf{w} \setminus \mathbf{u}$ we have $w_i < u_k$, i.e., $u_j = n - j + 1$ for $1 \le j \le k$. As in Lemma 2.5, let $\bar{\mathbf{w}}$ be the word obtained from \mathbf{w} by replacing each of $u_1, ..., u_k$ with n - k + 1. By Lemma 2.5 we have that $p_{\mathbf{w}}(t) = p_{kk-1}...1(t) p_{\bar{\mathbf{w}}}(t)$. Note that $\bar{\mathbf{w}} \setminus \bar{w}_n = \bar{w}_1 \cdots \bar{w}_{n-1}$ is the word $\overline{\phi_n(\mathbf{w})}$ which is obtained from $\phi_n(\mathbf{w})$ by replacing

each of the occurrences of n-1, n-2, ..., n-k+1 by n-k+1, so applying Lemma 2.5 again we get $p_{\phi_n(\mathbf{w})}(t) = p_{k-1k-2...1}(t) p_{\overline{\mathbf{w}}\setminus\overline{w_n}}(t)$. Since $\overline{w_i} \leq \overline{w_n} = n-k+1$ for $1 \leq i \leq n$, it follows that $p_{\overline{\mathbf{w}}\setminus\overline{w_n}}(t) = p_{\overline{\mathbf{w}}}(t)$, hence

$$p_{\phi_n(\mathbf{w})}(t) = p_{k-1k-2\cdots 1}(t) p_{\bar{\mathbf{w}}}(t).$$

Therefore we obtain that

$$p_{\mathbf{w}}(t) = \frac{p_{kk-1\dots 1}(t)}{p_{k-1k-2\dots 1}(t)} p_{\phi_n(\mathbf{w})}(t) = (1+t+t^2+\dots+t^{k-1}) p_{\phi_n(\mathbf{w})}(t),$$

which completes the proof.

Proof of Theorem 1.1. Suppose that $p_{\mathbf{w}}(t)$ factors into polynomials of the form $1 + t + t^2 + \cdots + t^r$. In particular, $p_{\mathbf{w}}(t)$ is symmetric. Applying [3] we conclude that $X_{\mathbf{w}}$ is rationally smooth. Deodhar [4] showed that rational smoothness is equivalent to smoothness for Schubert varieties of type A. By [6] it follows that \mathbf{w} avoids the patterns 4231 and 3412.

Now suppose that **w** avoids the patterns 4231 and 3412. By induction on the number of elements of **w** it follows immediately from Theorem 2.6 and Lemma 2.4 that $p_{\mathbf{w}}(t)$ factors into polynomials of the form $1 + t + t^2 + \cdots + t^r$.

Remark 2.7. For S_n a factorization theorem of Chevalley, cf. [5, §3.15], states that for the maximal element $\tau = n n - 1...1 \in S_n$ the polynomial $p_{\tau}(t)$ factors as

$$p_{\tau}(t) = \prod_{i=1}^{n-1} (1+t+t^2+\cdots+t^i).$$

This factorization follows immediately by induction from Theorem 2.6.

Remark 2.8. Theorem 2.6 gives an algorithm for computing the Poincaré polynomial $p_{\mathbf{w}}(t)$ of any $\mathbf{w} \in \text{Sm}_n$ as a product

$$p_{\mathbf{w}}(t) = \prod_{i=1}^{n-1} (1 + t + t^2 + \dots + t^{a_i}).$$
(2)

Moreover, Reiner [8] observed that by induction on *n* one immediately obtains from Theorem 2.6 expressions for the powers $a_1, ..., a_{n-1}$ appearing in (2) in terms of the inversions of **w**. Namely, for $1 \le k \le n-1$ let λ_k be the number of pairs (i, j) such that $1 \le i < j \le n$ and *k* is the largest integer with the property that there exists a sequence $i=i_0 < i_1 < \cdots < i_k = j$ with $w_{i_0} > w_{i_1} > \cdots > w_{i_k}$. Then $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{n-1}$ and, assuming $a_1 \ge a_2 \ge \cdots \ge a_{n-1}$, we have that $(a_1, ..., a_{n-1})$ is the conjugate partition of $(\lambda_1, ..., \lambda_{n-1})$.

Remark 2.9. Recently the factorization ideas in this paper were extended to Schubert varieties of types B and C by Billey in [2], where she showed that rational smoothness for such varieties is characterized by pattern avoidance

ACKNOWLEDGMENT

I thank Sara Billey for the interesting discussions and for running some examples on computer.

REFERENCES

- E. Akyildiz and J. Carrell, A generalization of the Kostant–Macdonald identity, *Proc. Nat. Acad. Sci. U.S.A.* 86 (1989), 3934–3937.
- 2. S. Billey, Pattern avoidance and rational smoothness of Schubert varieties, preprint, 1998.
- J. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, "Proceedings of Symposia in Pure Math.," Vol. 56, Part 1, pp. 53–61, 1994.
- V. Deodhar, Local Poincaré duality and non-singularity of Schubert varieties, Comm. Algebra 13 (1985), 1379–1388.
- 5. J. Humphreys, "Reflection Groups and Coxeter Groups," Cambridge Univ. Press, Cambridge, UK, 1990.
- V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in SL(n)/B, Proc. Indian Acad. Sci. (Math Sci.) 100 (1990), 45–52.
- R. Proctor, Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982), 104–126.
- 8. V. Reiner, private communication, 1997.