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We consider the symmetric group S,, whose elements are permutations
written as words w;w,---w,. It is a graded poset with the Bruhat order <.
The Bruhat order was described combinatorially by Proctor [7]. We say
that a set of numbers {a, .., a;} is less than a set {b,, .., b;} if when the
elements in the two sets are written in increasing order we have a; < b, for
1 <i<k. The following criterion is proved in [7]: Let v, we S,,, then v<Xw
if and only if for each 1 <i<n we have {v;, .., v,} >{w;, .., w,}. The rank
of an element we S, is called the length of w and is denoted by /(w). For
we S, consider the Poincaré polynomial p () =3, <, t". We prove the
following theorem; the proof of the only if direction is combinatorial:

THEOREM 1.1. Let weS,. The Poincaré polynomial p.(t) factors into
polynomials of the form 1 +t+t>+ --- + " if and only if w does not contain
a subsequence w; w, w; w; of 4 elements with the same relative order as 4231
or 3412.

The motivation for this result comes from Schubert varieties. Let B be
the Borel subgroup of SL,(C) consisting of the upper triangular matrices.
The Weyl group of type A is the symmetric group S,. For we S, let
X,, = BwB/B be the Schubert variety of type A indexed by w. Let P,(¢) be
the Poincaré polynomial of the cohomology ring of X,. Then P,(¢)=
p.(2?). Lakshmibai and Sandhya [ 6] showed that X, is smooth if and only
if w does not contain a subsequence w; w; w; w; of 4 elements with the
same relative order as 4231 or 3412.

Thus, Theorem 1.1 is equivalent to:
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THEOREM 1.2. A Schubert variety of type A is smooth if and only if the
Poincaré polynomial of its cohomology ring factors into polynomials of the
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As a referee pointed out, the “only if” assertion of Theorem 1.2 follows
from Theorems 1 and 3 in [ 1]; the proofs of these theorems in [ 1] require
Algebraic Geometry methods.

2. PROOF OF THEOREM 1.1

Let w be a permutation in S,. Write w=wnw". Let u=u, ---u, be the
subword of maximal length of w such that u; =n, u, is the largest number
to the right of u, in w, u5 is the largest number to the right of u, in w, ..., u,
is the largest number to the right of u,_, in w. (Then u,=w, is the
rightmost element of w” and u; >u,> --- >u,.) Fix w, w, w”, and u as
above.

Lemma 2.1.  If nw" does not contain a subsequence of 4 elements with the
same relative order as 4231, then for any w;cnw” \u we have w; <u,.

Proof. Assume the contrary, ie., there exists a w,enw”\u such that
w; > u.. Suppose w; is between u; and u;,; in nw". By the choice of u it
follows that u;>w;<u;, ;, so the subsequence u;w;u; , u; of nw” is order-
equivalent to 4231, which is a contradiction. ||

LeEMMA 2.2. If w does not contain a subsequence of 4 elements which is
order-equivalent to 4231 or 3412 and there exists an element w;e W' such that
w;> Uy, then u=nw", i.e., W" is a decreasing sequence.

Proof. Assume the contrary, ie., there exists an element w,e w” \u. By
Lemma 2.1 it follows that w; <u,, hence the subsequence w;nw;u, is order-
equivalent to 3412, a contradiction. ||

DEerFINITION 2.3. Denote by Sm,, the set of permutations in .S,, which do
not contain a subsequence of 4 elements which is order-equivalent to 4231
or 3412. Define a map ¢,,: Sm,, — S, _, such that ¢,(w) is obtained from w
by deleting #, as an element of w, replacing u, as an element of w with u,,
u, with us, ..., u, _, with u, and leaving w\u unchanged. (Lemma 2.4 below
shows that in fact ¢, is a map from Sm, to Sm,,_,.)

LemmaA 2.4. If weSm,, then ¢,(w)eSm,, _,.
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Proof. Assume the contrary, ie., v=¢,(w) contains a subsequence
U;, 0;,0;,v;, Which is order-equivalent to 4231 or 3412. If w” is a decreasing
sequence, then v is obtained from w by simply removing n, so v; , v;, Vs, U,
appear in w in the same order as in v, hence w contains a sequence which
is order-equivalent to 4231 or 3412, a contradiction. Therefore we can
assume that w” is not a decreasing sequence. Then Lemmas 2.1 and 2.2
imply that for every w,ew\u we have w;<u,, hence u;=n—j+1 for
1< j<k Write v=v'(n—1) v" and note that (n— 1) v” is order-equivalent
to nw”\w,. This implies that if v, €(n—1)v", then the sequence
w; Wi, w;w;, In W is order-equivalent to v; v; v, v, which is a contradiction.
Hence we can assume that v; € v'. We consider 2 cases:

Case 1. v;v,v,v, is order-equivalent to 4231.

In this case v; >v;,v;,v;,. Since v, €V, we have v; <u,, hence
Uiy Vs Uz, <uy. This implies that none of v;,v;,v;, v, is in u, hence
Ui = Wiy Oy =W, Uy = Wi, U =W, SO w; w, w,w; 1s order-equivalent to
4231, a contradiction.

Case 2. v;v;v;v, is order-equivalent to 3412.

Again v; <u,, hence v;, v;, <v; <uy, 80 v;, v; ¢u. Therefore w; =v;,
W, =0, and w, =v,. Also, w, =v, if v, ¢u and w;, >v, if v, eu. This
shows that w;, >w;, w,, w,. Therefore the sequence w; w; w; w, is order-
equivalent to 3412, a contradiction. ||

LEMMA 25. Let we S, and 1 <iy <i, < --- <ip<n be such that w; =n,
W, =n— 1, ..., W, =n —k+1. Let w be the word obtained from w by
replacing each of w; , .., w; with n—k+ 1. Then

k—1
Po(t)=Ps() prac—1..a()=ps(t) [T (L+1+ 224+ 1)
i=1
Proof. Let veS, be such that v<xw. Let v ---v; be the subsequence
of v corresponding to w;---w,, le, v;---v; 18 a permutation of
{n,n—1,..,n—k+1}. Denote by v be the word obtained from v by
replacing each of v;, ..., v; with n—k+1, so I(v)=I(V)+ (v, ---v;). Since
v<Xw, we conclude that v<Xw. Note also that v and Ujy s s U, ATE uniquely
determined by v and vice-versa. Let T be the set of pairs (o, t), where ¢ is
a permutation of the multiset {1, ..,.n—k,n—k+1,..,n—k+ 1} in which
n—k+1 appears k times, 6XW, and t is a permutation of {n,n—1, ..,
n—k+1}. The above discussion shows that the map

Yi{veS, | v<w} > T

v (¥, vjl--'vjk)
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is a bijection such that if y(v)=(s, 1), then /(v) =/(0)+I(t). This shows
that

Pw(8) = DP&l8) Prn—1, . n—te+1(1) = pa(t) Prxc—1, . 1(7)
k—1

pelt) [T M+t +22+ - +1),

i=1

which concludes the proof. ||

THEOREM 2.6. If we Sm,,, then po(1)=(1+1+12+ - +1°71) py (1)
Proof.

Case 1. u=nw", ie., w" is a decreasing sequence.

Let ve S, be such that v<xw. Then

{Vp k1o o Un} > AW st 15 s Wil (1)

Since w,,_; ., =n it follows that v,_,,,=n for some / with 1 </<k. Let
¢ be the permutation in S, obtained from v by arranging the last &
elements of v in decreasing order. Then v<X¢ and g,_,,;=n. By (1) and
the fact that w” is decreasing it follows that ¢,,_, ., =w,_, ., for 1 <i<k,
hence {0, 44w 0u} > {Wy_ g y4s oy w,} for 1 <i<k. Since {o}, .., 0,} =
{v,, ..v,} for 1<j<n—k and v<Xw it follows that {g;, ..,0,} >
{w;, ... w,} for 1< j<n—k. Therefore 6 <Xw. Since ¢\n is obtained from
v\n by arranging the last k —1 elements of v\n in decreasing order it
follows that v\n=<{c\n. Since n is in the same position in ¢ as in w and
o <X w it follows that ¢\n <X w\n. This implies that v\n <X w\n = ¢,(w). Note
also that v is uniquely determined by v\n and /. This shows that the map

Y (veS, |v=w) > {(n D) TeS, . t=<dy(w), 1 <I<k)

vie (v\n, 1)

is a bijection such that if y(v)=(z, [), then /(v)=/(t)+k — [ Therefore
P =(1+1+2+ - +171) py (1)

Case 2. u#nw", ie.,, w” is not a decreasing sequence.

In this case Lemmas 2.1 and 2.2 imply that for any w,ew\u we have
w;<ug, e, u;=n—j+1for 1 <j<k Asin Lemma 2.5, let w be the word
obtained from w by replacing each of u,,.. u, with n—k+1. By
Lemma 2.5 we have that p.(f)= pic_1...1(¢) ps(t). Note that w\w,=
Wy -+-W,_, is the word ¢,(w) which is obtained from ¢,(w) by replacing
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each of the occurrences of n—1,n—2,..,n—k+1 by n—k+1, so apply-
ing Lemma 2.5 again we get py () = Pr_1x—2...1() Pas (7). Since w; <
w,=n—k+1 for 1 <i<n, it follows that pg\; (7) = ps(?), hence

Py, w\8) =Pk —1ic—2...1(2) psl?).

Therefore we obtain that

_ Pric—1...(7)

= PomD)=(1+t4+2+ - +0571) p,y (1),
Di—1k—z...a(t) = "

Pw(l)

which completes the proof. ||

Proof of Theorem 1.1. Suppose that p,(t) factors into polynomials of
the form 1+¢+*+ ... +¢". In particular, p,(z) is symmetric. Applying
[3] we conclude that X, is rationally smooth. Deodhar [4] showed that
rational smoothness is equivalent to smoothness for Schubert varieties of
type A. By [6] it follows that w avoids the patterns 4231 and 3412.

Now suppose that w avoids the patterns 4231 and 3412. By induction
on the number of elements of w it follows immediately from Theorem 2.6
and Lemma 2.4 that p,(¢) factors into polynomials of the form 1+ ¢+
£+ 41 |

Remark 2.7. For S, a factorization theorem of Chevalley, cf. [5,
§3.15], states that for the maximal element t=nn—1..1€S, the poly-
nomial p(¢) factors as

n—1
p(t)=[] A+t+2+ - +1).
i=1

This factorization follows immediately by induction from Theorem 2.6.

Remark 2.8. Theorem 2.6 gives an algorithm for computing the Poincaré
polynomial p(z) of any we Sm,, as a product

n—1

pul)=]] (1+t+24 -+ +1%). (2)

i=1

Moreover, Reiner [8] observed that by induction on # one immediately
obtains from Theorem 2.6 expressions for the powers a4, ..., a,,_; appearing
in (2) in terms of the inversions of w. Namely, for 1 <k<n—1 let 1, be
the number of pairs (i, j) such that 1 <i< j<n and k is the largest integer
with the property that there exists a sequence i=iy<i; < - - <ipz=]
with w; >w; > .- >w,;. Then 4,=22,> --- >4,_, and, assuming a, >
a,> --- =2a,_,;, we have that (a,, .., a,_,) is the conjugate partition of
(s coor Ap1)-
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Remark 2.9. Recently the factorization ideas in this paper were
xtended to Schubert varieties of types B and C by Billey in [ 2], where she

showed that rational smoothness for such varieties is characterized by
pattern avoidance
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