NOTE

Factoring the Poincaré Polynomials for the Bruhat Order on S_{n}

Vesselin Gasharov
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

iew metadata, citation and similar papers at core.ac.uk

We consider the symmetric group S_{n}, whose elements are permutations written as words $w_{1} w_{2} \cdots w_{n}$. It is a graded poset with the Bruhat order \preccurlyeq. The Bruhat order was described combinatorially by Proctor [7]. We say that a set of numbers $\left\{a_{1}, \ldots, a_{k}\right\}$ is less than a set $\left\{b_{1}, \ldots, b_{k}\right\}$ if when the elements in the two sets are written in increasing order we have $a_{i} \leqslant b_{i}$ for $1 \leqslant i \leqslant k$. The following criterion is proved in [7]: Let $\mathbf{v}, \mathbf{w} \in S_{n}$, then $\mathbf{v} \leqslant \mathbf{w}$ if and only if for each $1 \leqslant i \leqslant n$ we have $\left\{v_{i}, \ldots, v_{n}\right\}>\left\{w_{i}, \ldots, w_{n}\right\}$. The rank of an element $\mathbf{w} \in S_{n}$ is called the length of \mathbf{w} and is denoted by $l(\mathbf{w})$. For $\mathbf{w} \in S_{n}$ consider the Poincare polynomial $p_{\mathbf{w}}(t)=\sum_{\mathbf{v} \preccurlyeq \mathbf{w}} t^{l(\mathbf{v})}$. We prove the following theorem; the proof of the only if direction is combinatorial:

Theorem 1.1. Let $\mathbf{w} \in S_{n}$. The Poincaré polynomial $p_{\mathbf{w}}(t)$ factors into polynomials of the form $1+t+t^{2}+\cdots+t^{r}$ if and only if \mathbf{w} does not contain a subsequence $w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}$ of 4 elements with the same relative order as 4231 or 3412.

The motivation for this result comes from Schubert varieties. Let B be the Borel subgroup of $S L_{n}(\mathbb{C})$ consisting of the upper triangular matrices. The Weyl group of type A is the symmetric group S_{n}. For $\mathbf{w} \in S_{n}$ let $X_{\mathbf{w}}=\overline{B \mathbf{w} B / B}$ be the Schubert variety of type A indexed by w. Let $\mathrm{P}_{\mathbf{w}}(t)$ be the Poincare polynomial of the cohomology ring of $X_{\mathbf{w}}$. Then $\mathrm{P}_{\mathbf{w}}(t)=$ $p_{\mathbf{w}}\left(t^{2}\right)$. Lakshmibai and Sandhya [6] showed that $X_{\mathbf{w}}$ is smooth if and only if \mathbf{w} does not contain a subsequence $w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}$ of 4 elements with the same relative order as 4231 or 3412 .

Thus, Theorem 1.1 is equivalent to:

Theorem 1.2. A Schubert variety of type A is smooth if and only if the Poincaré polynomial of its cohomology ring factors into polynomials of the form $\sum_{i=0}^{r} t^{2 i}$.

As a referee pointed out, the "only if" assertion of Theorem 1.2 follows from Theorems 1 and 3 in [1]; the proofs of these theorems in [1] require Algebraic Geometry methods.

2. PROOF OF THEOREM 1.1

Let \mathbf{w} be a permutation in S_{n}. Write $\mathbf{w}=\mathbf{w}^{\prime} n \mathbf{w}^{\prime \prime}$. Let $\mathbf{u}=u_{1} \cdots u_{k}$ be the subword of maximal length of \mathbf{w} such that $u_{1}=n, u_{2}$ is the largest number to the right of u_{1} in \mathbf{w}, u_{3} is the largest number to the right of u_{2} in $\mathbf{w}, \ldots, u_{k}$ is the largest number to the right of u_{k-1} in \mathbf{w}. (Then $u_{k}=w_{n}$ is the rightmost element of $\mathbf{w}^{\prime \prime}$ and $u_{1}>u_{2}>\cdots>u_{k}$.) Fix $\mathbf{w}, \mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}$, and \mathbf{u} as above.

Lemma 2.1. If $n \mathbf{w} \mathbf{w}^{\prime \prime}$ does not contain a subsequence of 4 elements with the same relative order as 4231, then for any $w_{i} \in n \mathbf{w}^{\prime \prime} \backslash \mathbf{u}$ we have $w_{i}<u_{k}$.

Proof. Assume the contrary, i.e., there exists a $w_{i} \in n \mathbf{w}^{\prime \prime} \backslash \mathbf{u}$ such that $w_{i}>u_{k}$. Suppose w_{i} is between u_{j} and u_{j+1} in $n \mathbf{w}^{\prime \prime}$. By the choice of \mathbf{u} it follows that $u_{j}>w_{i}<u_{j+1}$, so the subsequence $u_{j} w_{i} u_{j+1} u_{k}$ of $n \mathbf{w}^{\prime \prime}$ is orderequivalent to 4231 , which is a contradiction.

Lemma 2.2. If \mathbf{w} does not contain a subsequence of 4 elements which is order-equivalent to 4231 or 3412 and there exists an element $w_{i} \in \mathbf{w}^{\prime}$ such that $w_{i}>u_{k}$, then $\mathbf{u}=n \mathbf{w}^{\prime \prime}$, i.e., $\mathbf{w}^{\prime \prime}$ is a decreasing sequence.

Proof. Assume the contrary, i.e., there exists an element $w_{j} \in \mathbf{w}^{\prime \prime} \backslash \mathbf{u}$. By Lemma 2.1 it follows that $w_{j}<u_{k}$, hence the subsequence $w_{i} n w_{j} u_{k}$ is orderequivalent to 3412 , a contradiction.

Definition 2.3. Denote by Sm_{n} the set of permutations in S_{n} which do not contain a subsequence of 4 elements which is order-equivalent to 4231 or 3412. Define a map $\phi_{n}: \operatorname{Sm}_{n} \rightarrow S_{n-1}$ such that $\phi_{n}(\mathbf{w})$ is obtained from \mathbf{w} by deleting u_{1} as an element of \mathbf{w}, replacing u_{1} as an element of \mathbf{w} with u_{2}, u_{2} with u_{3}, \ldots, u_{k-1} with u_{k} and leaving $\mathbf{w} \backslash \mathbf{u}$ unchanged. (Lemma 2.4 below shows that in fact ϕ_{n} is a map from Sm_{n} to Sm_{n-1}.)

Lemma 2.4. If $\mathbf{w} \in \operatorname{Sm}_{n}$, then $\phi_{n}(\mathbf{w}) \in \operatorname{Sm}_{n-1}$.

Proof. Assume the contrary, i.e., $\mathbf{v}=\phi_{n}(\mathbf{w})$ contains a subsequence $v_{i_{1}} v_{i_{2}} v_{i_{3}} v_{i_{4}}$ which is order-equivalent to 4231 or 3412 . If $\mathbf{w}^{\prime \prime}$ is a decreasing sequence, then \mathbf{v} is obtained from \mathbf{w} by simply removing n, so $v_{i_{1}}, v_{i_{2}}, v_{i_{3}}, v_{i_{4}}$ appear in \mathbf{w} in the same order as in \mathbf{v}, hence \mathbf{w} contains a sequence which is order-equivalent to 4231 or 3412 , a contradiction. Therefore we can assume that $\mathbf{w}^{\prime \prime}$ is not a decreasing sequence. Then Lemmas 2.1 and 2.2 imply that for every $w_{i} \in \mathbf{w} \backslash \mathbf{u}$ we have $w_{i}<u_{k}$, hence $u_{j}=n-j+1$ for $1 \leqslant j \leqslant k$. Write $\mathbf{v}=\mathbf{v}^{\prime}(n-1) \mathbf{v}^{\prime \prime}$ and note that $(n-1) \mathbf{v}^{\prime \prime}$ is order-equivalent to $n \mathbf{w}^{\prime \prime} \backslash w_{n}$. This implies that if $v_{i_{1}} \in(n-1) \mathbf{v}^{\prime \prime}$, then the sequence $w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}$ in \mathbf{w} is order-equivalent to $v_{i_{1}} v_{i_{2}} v_{i_{3}} v_{i_{4}}$, which is a contradiction. Hence we can assume that $v_{i_{1}} \in \mathbf{v}^{\prime}$. We consider 2 cases:

Case 1. $v_{i_{1}} v_{i_{2}} v_{i_{3}} v_{i_{4}}$ is order-equivalent to 4231.
In this case $v_{i_{1}}>v_{i_{2}}, v_{i_{3}}, v_{i_{4}}$. Since $v_{i_{1}} \in \mathbf{v}^{\prime}$, we have $v_{i_{1}}<u_{k}$, hence $v_{i_{2}}, v_{i_{3}}, v_{i_{4}}<u_{k}$. This implies that none of $v_{i_{1}}, v_{i_{2}}, v_{i_{3}}, v_{i_{4}}$ is in \mathbf{u}, hence $v_{i_{1}}=w_{i_{1}}, v_{i_{2}}=w_{i_{2}}, v_{i_{3}}=w_{i_{3}}, v_{i_{4}}=w_{i_{4}}$, so $w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}$ is order-equivalent to 4231, a contradiction.

Case 2. $v_{i_{1}} v_{i_{2}} v_{i_{3}} v_{i_{4}}$ is order-equivalent to 3412.
Again $v_{i_{1}}<u_{k}$, hence $v_{i_{3}}, v_{i_{4}}<v_{i_{1}}<u_{k}$, so $v_{i_{3}}, v_{i_{4}} \notin \mathbf{u}$. Therefore $w_{i_{1}}=v_{i_{1}}$, $w_{i_{3}}=v_{i_{3}}$, and $w_{i_{4}}=v_{i_{4}}$. Also, $w_{i_{2}}=v_{i_{2}}$ if $v_{i_{2}} \notin \mathbf{u}$ and $w_{i_{2}}>v_{i_{2}}$ if $v_{i_{2}} \in \mathbf{u}$. This shows that $w_{i_{2}}>w_{i_{1}}, w_{i_{3}}, w_{i_{4}}$. Therefore the sequence $w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}$ is orderequivalent to 3412 , a contradiction.

Lemma 2.5. Let $\mathbf{w} \in S_{n}$ and $1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n$ be such that $w_{i_{1}}=n$, $w_{i_{2}}=n-1, \ldots, w_{i_{k}}=n-k+1$. Let $\overline{\mathbf{w}}$ be the word obtained from \mathbf{w} by replacing each of $w_{i_{1}}, \ldots, w_{i_{k}}$ with $n-k+1$. Then

$$
p_{\mathbf{w}}(t)=p_{\overline{\mathbf{w}}}(t) p_{k k-1 \ldots 1}(t)=p_{\overline{\mathbf{w}}}(t) \prod_{i=1}^{k-1}\left(1+t+t^{2}+\ldots+t^{i}\right) .
$$

Proof. Let $\mathbf{v} \in S_{n}$ be such that $\mathbf{v} \preccurlyeq \mathbf{w}$. Let $v_{j_{1}} \cdots v_{j_{k}}$ be the subsequence of \mathbf{v} corresponding to $w_{i_{1}} \cdots w_{i_{k}}$, i.e., $v_{j_{1}} \cdots v_{j_{k}}$ is a permutation of $\{n, n-1, \ldots, n-k+1\}$. Denote by $\overline{\mathbf{v}}$ be the word obtained from \mathbf{v} by replacing each of $v_{j_{1}}, \ldots, v_{j_{k}}$ with $n-k+1$, so $l(\mathbf{v})=l(\overline{\mathbf{v}})+l\left(v_{j_{1}} \cdots v_{j_{k}}\right)$. Since $\mathbf{v} \preccurlyeq \mathbf{w}$, we conclude that $\overline{\mathbf{v}} \preccurlyeq \overline{\mathbf{w}}$. Note also that $\overline{\mathbf{v}}$ and $v_{j_{1}}, \ldots, v_{j_{k}}$ are uniquely determined by \mathbf{v} and vice-versa. Let T be the set of pairs $(\boldsymbol{\sigma}, \boldsymbol{\tau})$, where $\boldsymbol{\sigma}$ is a permutation of the multiset $\{1, \ldots, n-k, n-k+1, \ldots, n-k+1\}$ in which $n-k+1$ appears k times, $\boldsymbol{\sigma} \preccurlyeq \overline{\mathbf{w}}$, and τ is a permutation of $\{n, n-1, \ldots$, $n-k+1\}$. The above discussion shows that the map

$$
\begin{aligned}
\psi: & \left\{\mathbf{v} \in S_{n} \mid \mathbf{v} \preccurlyeq \mathbf{w}\right\} \rightarrow T \\
& \mathbf{v} \mapsto\left(\overline{\mathbf{v}}, v_{j_{1}} \cdots v_{j_{k}}\right)
\end{aligned}
$$

is a bijection such that if $\psi(\mathbf{v})=(\boldsymbol{\sigma}, \tau)$, then $l(\mathbf{v})=l(\boldsymbol{\sigma})+l(\tau)$. This shows that

$$
\begin{aligned}
p_{\mathbf{w}}(t) & =p_{\overline{\mathbf{w}}}(t) p_{n n-1, \ldots, n-k+1}(t)=p_{\overline{\mathbf{w}}}(t) p_{k k-1, \ldots, 1}(t) \\
& =p_{\overline{\mathbf{w}}}(t) \prod_{i=1}^{k-1}\left(1+t+t^{2}+\cdots+t^{i}\right),
\end{aligned}
$$

which concludes the proof.
Theorem 2.6. If $\mathbf{w} \in \operatorname{Sm}_{n}$, then $p_{\mathbf{w}}(t)=\left(1+t+t^{2}+\cdots+t^{k-1}\right) p_{\phi_{n}(\mathbf{w})}(t)$. Proof.

Case 1. $\mathbf{u}=n \mathbf{w}^{\prime \prime}$, i.e., $\mathbf{w}^{\prime \prime}$ is a decreasing sequence.
Let $\mathbf{v} \in S_{n}$ be such that $\mathbf{v} \preccurlyeq \mathbf{w}$. Then

$$
\begin{equation*}
\left\{v_{n-k+1}, \ldots, v_{n}\right\}>\left\{w_{n-k+1}, \ldots, w_{n}\right\} . \tag{1}
\end{equation*}
$$

Since $w_{n-k+1}=n$ it follows that $v_{n-k+l}=n$ for some l with $1 \leqslant l \leqslant k$. Let $\boldsymbol{\sigma}$ be the permutation in S_{n} obtained from \mathbf{v} by arranging the last k elements of \mathbf{v} in decreasing order. Then $\mathbf{v} \preccurlyeq \boldsymbol{\sigma}$ and $\sigma_{n-k+1}=n$. By (1) and the fact that $\mathbf{w}^{\prime \prime}$ is decreasing it follows that $\sigma_{n-k+i} \geqslant w_{n-k+i}$ for $1 \leqslant i \leqslant k$, hence $\left\{\sigma_{n-k+i}, \ldots, \sigma_{n}\right\}>\left\{w_{n-k+i}, \ldots, w_{n}\right\}$ for $1 \leqslant i \leqslant k$. Since $\left\{\sigma_{j}, \ldots, \sigma_{n}\right\}=$ $\left\{v_{j}, \ldots, v_{n}\right\}$ for $1 \leqslant j \leqslant n-k$ and $\mathbf{v} \leqslant \mathbf{w}$ it follows that $\left\{\sigma_{j}, \ldots, \sigma_{n}\right\} \geqslant$ $\left\{w_{j}, \ldots, w_{n}\right\}$ for $1 \leqslant j \leqslant n-k$. Therefore $\boldsymbol{\sigma} \preccurlyeq \mathbf{w}$. Since $\boldsymbol{\sigma} \backslash n$ is obtained from $\mathbf{v} \backslash n$ by arranging the last $k-1$ elements of $\mathbf{v} \backslash n$ in decreasing order it follows that $\mathbf{v} \backslash n \preccurlyeq \boldsymbol{\sigma} \backslash n$. Since n is in the same position in $\boldsymbol{\sigma}$ as in \mathbf{w} and $\boldsymbol{\sigma} \preccurlyeq \mathbf{w}$ it follows that $\boldsymbol{\sigma} \backslash n \preccurlyeq \mathbf{w} \backslash n$. This implies that $\mathbf{v} \backslash n \preccurlyeq \mathbf{w} \backslash n=\phi_{n}(\mathbf{w})$. Note also that \mathbf{v} is uniquely determined by $\mathbf{v} \backslash n$ and l. This shows that the map

$$
\begin{aligned}
\psi:\left\{\mathbf{v} \in S_{n} \mid \mathbf{v} \preccurlyeq \mathbf{w}\right\} & \rightarrow\left\{(\tau, l) \mid \tau \in S_{n-1}, \tau \preccurlyeq \phi_{n}(\mathbf{w}), 1 \leqslant l \leqslant k\right\} \\
\mathbf{v} & \mapsto(\mathbf{v} \backslash n, l)
\end{aligned}
$$

is a bijection such that if $\psi(\mathbf{v})=(\tau, l)$, then $l(\mathbf{v})=l(\tau)+k-l$. Therefore $p_{\mathbf{w}}(t)=\left(1+t+t^{2}+\cdots+t^{k-1}\right) p_{\phi_{n}(\mathbf{w})}(t)$.

Case 2. $\mathbf{u} \neq n \mathbf{w}^{\prime \prime}$, i.e., $\mathbf{w}^{\prime \prime}$ is not a decreasing sequence.
In this case Lemmas 2.1 and 2.2 imply that for any $w_{i} \in \mathbf{w} \backslash \mathbf{u}$ we have $w_{i}<u_{k}$, i.e., $u_{j}=n-j+1$ for $1 \leqslant j \leqslant k$. As in Lemma 2.5 , let $\overline{\mathbf{w}}$ be the word obtained from \mathbf{w} by replacing each of u_{1}, \ldots, u_{k} with $n-k+1$. By Lemma 2.5 we have that $p_{\mathbf{w}}(t)=p_{k k-1 \ldots 1}(t) p_{\overline{\mathbf{w}}}(t)$. Note that $\overline{\mathbf{w}} \backslash \bar{w}_{n}=$ $\bar{w}_{1} \cdots \bar{w}_{n-1}$ is the word $\overline{\phi_{n}(\mathbf{w})}$ which is obtained from $\phi_{n}(\mathbf{w})$ by replacing
each of the occurrences of $n-1, n-2, \ldots, n-k+1$ by $n-k+1$, so applying Lemma 2.5 again we get $p_{\phi_{n}(\mathbf{w})}(t)=p_{k-1 k-2 \ldots 1}(t) p_{\overline{\mathbf{w}} \backslash \bar{w}_{n}}(t)$. Since $\bar{w}_{i} \leqslant$ $\bar{w}_{n}=n-k+1$ for $1 \leqslant i \leqslant n$, it follows that $p_{\overline{\bar{w}} \backslash \bar{w}_{n}}(t)=p_{\bar{w}}(t)$, hence

$$
p_{\phi_{n}(\mathbf{w})}(t)=p_{k-1 k-2 \cdots 1}(t) p_{\overline{\mathbf{w}}}(t) .
$$

Therefore we obtain that

$$
p_{\mathbf{w}}(t)=\frac{p_{k k-1 \cdots 1}(t)}{p_{k-1 k-2 \cdots 1}(t)} p_{\phi_{n}(\mathbf{w})}(t)=\left(1+t+t^{2}+\cdots+t^{k-1}\right) p_{\phi_{n}(\mathbf{w})}(t),
$$

which completes the proof.
Proof of Theorem 1.1. Suppose that $p_{\mathbf{w}}(t)$ factors into polynomials of the form $1+t+t^{2}+\cdots+t^{r}$. In particular, $p_{\mathbf{w}}(t)$ is symmetric. Applying [3] we conclude that X_{w} is rationally smooth. Deodhar [4] showed that rational smoothness is equivalent to smoothness for Schubert varieties of type A. By [6] it follows that w avoids the patterns 4231 and 3412.

Now suppose that \mathbf{w} avoids the patterns 4231 and 3412. By induction on the number of elements of \mathbf{w} it follows immediately from Theorem 2.6 and Lemma 2.4 that $p_{\mathbf{w}}(t)$ factors into polynomials of the form $1+t+$ $t^{2}+\cdots+t^{r}$.

Remark 2.7. For S_{n} a factorization theorem of Chevalley, cf. [5, §3.15], states that for the maximal element $\tau=n n-1 \ldots 1 \in S_{n}$ the polynomial $p_{\tau}(t)$ factors as

$$
p_{\tau}(t)=\prod_{i=1}^{n-1}\left(1+t+t^{2}+\cdots+t^{i}\right) .
$$

This factorization follows immediately by induction from Theorem 2.6.
Remark 2.8. Theorem 2.6 gives an algorithm for computing the Poincaré polynomial $p_{\mathbf{w}}(t)$ of any $\mathbf{w} \in \operatorname{Sm}_{n}$ as a product

$$
\begin{equation*}
p_{\mathbf{w}}(t)=\prod_{i=1}^{n-1}\left(1+t+t^{2}+\cdots+t^{a_{i}}\right) . \tag{2}
\end{equation*}
$$

Moreover, Reiner [8] observed that by induction on n one immediately obtains from Theorem 2.6 expressions for the powers a_{1}, \ldots, a_{n-1} appearing in (2) in terms of the inversions of \mathbf{w}. Namely, for $1 \leqslant k \leqslant n-1$ let λ_{k} be the number of pairs (i, j) such that $1 \leqslant i<j \leqslant n$ and k is the largest integer with the property that there exists a sequence $i=i_{0}<i_{1}<\cdots<i_{k}=j$ with $w_{i_{0}}>w_{i_{1}}>\cdots>w_{i_{k}}$. Then $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n-1}$ and, assuming $a_{1} \geqslant$ $a_{2} \geqslant \cdots \geqslant a_{n-1}$, we have that $\left(a_{1}, \ldots, a_{n-1}\right)$ is the conjugate partition of $\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)$.

Remark 2.9. Recently the factorization ideas in this paper were extended to Schubert varieties of types B and C by Billey in [2], where she showed that rational smoothness for such varieties is characterized by pattern avoidance

ACKNOWLEDGMENT

I thank Sara Billey for the interesting discussions and for running some examples on computer.

REFERENCES

1. E. Akyildiz and J. Carrell, A generalization of the Kostant-Macdonald identity, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3934-3937.
2. S. Billey, Pattern avoidance and rational smoothness of Schubert varieties, preprint, 1998.
3. J. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, "Proceedings of Symposia in Pure Math.," Vol. 56, Part 1, pp. 53-61, 1994.
4. V. Deodhar, Local Poincaré duality and non-singularity of Schubert varieties, Comm. Algebra 13 (1985), 1379-1388.
5. J. Humphreys, "Reflection Groups and Coxeter Groups," Cambridge Univ. Press, Cambridge, UK, 1990.
6. V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in $S L(n) / B$, Proc. Indian Acad. Sci. (Math Sci.) 100 (1990), 45-52.
7. R. Proctor, Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982), 104-126.
8. V. Reiner, private communication, 1997.
