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A B S T R A C T

In this work, a small core, Fibre Bragg Grating (FBG)-based smart contact lens for intraocular pressure (IOP)
measurement has been demonstrated. Further, an integral temperature compensation mechanism has been
developed and included in the sensor design, allowing it to offer good long-term measurement capability while
allowing for any local temperature fluctuations. The sensitivity of the device has been shown to be 12.9 p.m./
mmHg, yielding good repeatability in tests carried out. Such a small core fibre, FBG-based smart contact lens
shows significant potential for improving the management and therapy of glaucoma, the second most common
cause of preventable blindness in the world.
1. Introduction

Glaucoma is one of the world's leading causes of blindness [1]. It is
described as a group of eye diseases that lead to damage of the optic
nerve (optic neuropathy) and vision loss. A major risk factor for glau-
coma is increased intraocular pressure (IOP). Although vision that has
been lost due to glaucoma is irreversible, with early diagnosis, careful
monitoring and appropriate treatment such as therapy, further vision loss
can be prevented or reduced. With therapy, most patients retain useful
sight for life [2]. Since glaucoma has been described as the ‘silent thief of
sight’ because it progresses slowly and there are few noticeable warning
signs, initiatives to increase public awareness and make comprehensive
eye examinations easier are the key to reducing or eliminating undiag-
nosed glaucoma. This can be supported through regular IOP monitoring
which is critical to help manage the disease [3]. (see Table 1)

Lowering of IOP is the principal therapy available for the manage-
ment of glaucomas [4]. Current IOP measurements are generally done
during a visit to the clinician's office or surgery. In a similar fashion to
blood-pressure monitoring, a one-time measurement does not represent
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the overall risk. The IOP also shows diurnal variation which is greater in
diseased eyes [5] and these fluctuations have been shown to be associ-
ated with glaucoma progression [6,7]. The most usual method of
tonometry is the current ‘gold standard’ Goldmann applanation. For
logistical reasons, phasing (measurement of the IOP throughout the day)
is generally limited to being done within office hours, which means the
peaks and troughs may be missed if they occur outside these working
hours [8,9]. However, the benefit of continuous, simple IOP measure-
ment not requiring an independent observer to be present, is clear.

Researchers previously have developed methods for continuous IOP
monitoring by using implanted pressure sensors, MEMs chips and eye
curvature monitoring [10–17]. Pressure sensor implants require surgery
and the devices consume high wireless power during their operation,
thereby reducing patient compliance and causing problems due to device
temperature rises. The on-lens eye curvature method is less invasive and
can provide direct access to the eye surface with minimal disturbances.
However, the electronic, contact lens-based devices used to monitor such
changes cannot work in situations where there is strong electromagnetic
interference, such as when various scans are being undertaken. Thus,
2019
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Table 1
Measurement metrics of the presented IOP sensor.

Sensitivity 12.9� 0.2 p.m./mmHg
Measurement range 0–30mmHg
Uncertainty �0.1 mmHg
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there is a demand for new methods which will allow measurements to be
taken when there is significant electromagnetic interference present e.g.
with high levels of wireless power or X-rays or MRI and the approach is to
develop a sensor within the contact lens that can communicate IOP
readings without extra aerials, battery packs or recorders. As a conse-
quence, a new fibre optic-based technique that eliminates such problems
is discussed and its performance evaluated.

In recent years, optical fibre-based wearable sensors [18–27] have
been developing very rapidly due to their important properties of high
sensitivity, thin fibre (sensor) diameter and thus ease of bending the fibre
to fit the body and simplicity of integration of the sensor with the person.
The ability of optical fibre sensors to operate even with high levels of
electromagnetic interference make them suitable to work in situations
where such interference is present and allow verifiable measurements to
be made. Contact lenses, which are long established with low rates of
complications if handled correctly, can provide a suitable host for such a
sensor, as has previously been demonstrated. However, incorporating an
optical fibre into such a lens and making it comfortable is a challenge and
commercial single mode optical fibres (of typical diameter 125 μm,
equivalent to a human hair and used widely in telecommunications ap-
plications) could lead to discomfort issue in normal use. In addition, the
rigidity of fibre could cause contact lens deformation and reduce the
quality of the fit and change the refractive power of the lens as a result. In
this work, this particular problem could be reduced with the integration
of a smaller core optical fibre into a commercial contact lens, minimizing
discomfort to the wearer.

The aim of this study thus has been to develop an innovative optical
fibre sensor using a small diameter optical fibre integrated into a
temperature-compensated smart contact lens with the fibre containing a
Fibre Bragg Grating (FBG) designed to allow continuous IOP measure-
ment. The theoretical background to the research is discussed and the
experimental arrangement used is described, with results from tests
carried out reported and conclusions on the outcomes of the study drawn.

2. Theoretical background

Previous studies of intraocular pressure effects have shown that the
IOP changes will cause different corneal thickness variations [28]. The
approach used here has been to create a FBG-integrated contact lens to
measure changes in corneal curvature transmitted from the anterior
corneal surface/tearfilm to the contact lens developed where the curva-
ture change stretches the FBG, altering the grating spacing and thereby
causing a wavelength shift. Thus the contact lens system used in this
Fig. 1. (a) The design of the small core FBG-based contact lens; (b) a phot
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work was designed around a two FBG-based sensor, with integrated
temperature compensation.

A schematic of the device is shown in Fig. 1(a), illustrating the design
of the system to achieve the small core FBG based smart contact lens
sensor. In this design, two small core in-fibre Bragg gratings (FBGs) are
located as shown, at different distances from the centre of the contact
lens. Fig. 1(b) shows a photograph of the actual sensor showing the
fabricated sensor using the contact lens with the small core FBG attached.
The contact lens used was a commercial lens of diameter 14mm and
thickness 90 μm (PureVision made by Bausch & Lomb). The diameter of
the small core fibre is 50 μm. The length of the FBGs written into the fibre
was 5mm. The wavelengths of the two FBGs are 1545 nm and 1569 nm,
respectively. One of the FBGs was located in the centre of the contact lens
and the other was mounted close to the edge of the lens as designed.

Previous work [28] has suggested that the IOP change will cause a
larger deformation in centre region of the eyeball, compared to that seen
at the edge. Thus the FBG located close to centre will show the larger
wavelength shift. Any temperature variations, however, will cause
similar wavelength shifts to both the FBGs used in the sensor. Based on
these properties, the effects of the temperature and IOP changes can be
represented by:

fΔλ1 ¼ ST1 �ΔT þ SIOP1 �ΔPIOP

Δλ2 ¼ ST2 �ΔT þ SIOP2 �ΔPIOP
(1)

where Δλ1 and Δλ2 are the wavelength shifts associated with FBG1 and
FBG2 when subjected to pressure (IOP) and temperature variations; ST1
and ST2 are the temperature sensitivities of FBG1 and FBG2; SIOP1 and
SIOP2 are the sensitivities to IOP of both FBGs. ΔT and ΔPIOP are tem-
perature and IOP changes, respectively that occur during the experiment.

From these equations, the IOP change can then be calculated from:

ΔPIOP ¼ Δλ2 � CTΔλ1
SIOP2 � CTSIOP1

(2)

where here, CT ¼ ST2=ST1 is the temperature compensation coefficient of
the FBGs used.

3. Experimental arrangement

The fabrication of the ‘smart’ contact lens can be divided into
following steps: (1) small core fibre into which two FBGs were fabricated
at known (and similar) wavelengths using a UV laser and appropriate
phase masks was selected where the length of the FBGs used are, as
discussed, ~5mm. The wavelengths chosen for the two FBGs written into
the fibre are 1545 nm and 1569 nm, respectively; (2) the fibre surface
was cleaned and functioned with polymerizable groups so that it can
adhere evenly to the contact lens; (3) the fibre was bent to form a spiral
line– this being facilitated by the small core fibre used –to follow the
curved shape of the lens using tweezers. The fibre was then stuck onto the
ograph of the smart contact lens that has been fabricated in this work.



Fig. 3. Schematic of the experiment setup used in this work.
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surface of the selected contact lens, using the commercial cyanoacrylic
adhesive. Loctite 4850 glue was used here as it gives instant adhesion and
it is flexible – characteristics that are ideal for this application. This fibre
spiral fitted well the contact lens used (which was of diameter 14mm and
thickness 90 μm). One of the FBGs was located in the centre of the contact
lens (primarily to measure the IOP) and the other was mounted close to
the edge of the lens (to monitor the temperature); (4) the sensor thus
produced was then cured in air and quickly placed in commercial contact
lens storage liquid.

To calibrate the temperature compensation coefficient, the following
process was undertaken. The temperature of the storage liquid (and thus
of the lens) was increased, following which the contact lens was allowed
to cool to room temperature. Fig. 2 (a) shows the responses of the two
FBGs used to this temperature change – the results show that they have
closely matched temperature sensitivities, which agrees well with the
theoretical analysis set out earlier. From Fig. 2 (b), the linear fitted
temperature compensation coefficient monitored was 1:24 � 0:02. It is
noted that the temperature of a contact lens on a living eye will be
typically ~34 �C and thus small variations in and around that tempera-
ture can be measured with this system.

Fig. 3 shows the experimental setup used in the measurement of the
IOP change. To do so, a needle is inserted into an excised pig eye from the
back of the eyeball [29]. The IOP inside the excised eye was changed
using a simple manometer using a reservoir containing water where the
variation in the height of the reservoir enabled the pressure to be varied.
A PVC syringe tube from the reservoir was connected to the needle and a
pressure gauge (to act as a reference), using a 3-channel connector. The
optical fibre was connected to a FBG interrogator (sm125 type, Micron
Optics) to allow a continuous measurement to be made (where the res-
olution of the interrogator is 1 p.m. and the sampling rate is 2 Hz).

In this work a pig's eye was used as a proxy for the human eye – the
pig eye is an ex vivo animal model often used in vision sciences research
because its morphology is similar to the human eye [19]. The smart
contact lens was carefully placed on the pig eye and any bubbles removed
to create a good contact between the eye and the contact lens. The pig eye
was located in a shallow dish filled with water to keep it moist during the
experiment. A syringe needle was then moved from side of the eye, into
the anterior chamber of the eye, to create the variation in the IOP of the
eye, where the syringe was connected to a small bottle of water hanging
overhead, allowing the hydraulic pressure to change in the eyeball,
causing its IOP to increase or decrease in a reproducible way. The pres-
sure change can be calibrated by use of the pressure gauge shown in
Fig. 3, controlling the IOP change step size to be ~2mmHg.

Fig. 4 (a) illustrates the wavelength shifts of the FBGs built into the
contact lens with time, when IOP increase from 5 to 25mmHg (and with
this reversed for Fig. 4 (b)). These figures show that the wavelength
associated with FBG2, which is located in the centre of the lens (as shown
in Fig. 1 (a)), is red-shifted when the IOP increases (and conversely
blueshifts when the IOP decreases). By contrast, the grating FBG1 on the
Fig. 2. (a) Wavelength shift response of two FBGs with temperature decrease. (b) L
ature coefficient.
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edge of the contact lens (see Fig. 1 (a)) shows a very small wavelength
shift in both cases, likely due to the circumferential rather than radial
orientation of the FBG sensor, as would be expected from the discussion
above.

The data from Fig. 4 is then used to create Fig. 5, which illustrates the
(essentially linear) fit of FBG2 wavelength shift with IOP change. Here
the pressure sensitivity, measured using FBG2 is shown to be 12.9� 0.2
p.m./mmHg, contrasting with the sensitivity of FBG1 which is only ~0.5
p.m./mmHg, some 25 times less than that of FBG2. This enables FBG2 to
be used for pressure (and temperature) measurement and within exper-
imental error for FBG1 to be used to provide a correction for any tem-
perature changes during the experiment. This dual FBG-based set up
allows for effective temperature compensation to be applied, although
many in vivo studies will be undertaken at a stable body temperature.

The dynamic response of the sensor system is good, in that the in-
crease and subsequent decrease in the pressure provides responses from
the sensor which show good repeatability. The normal range for human
intraocular pressure is known to be within the range
10mmHg–21mmHg, this being done to maintain the normal shape of the
eyeball. Measurement accuracy can be improved by using the tempera-
ture compensation which is ‘built-in’ to the measurement method and
through a longer time averaging of the signal from the FBGs which
comprise the sensor, as the pressure signal will not normally change on a
second by second basis. Diurnal variation monitoring is important, as it is
greater in diseased eyes [5], and the sensor system developed here (with
integrated temperature compensation) is relatively easy to wear, thus
providing an accurate measurement method for periods of up to 24 h in
continuous monitoring, to support early glaucoma diagnosis.

In this study, while temperature compensation was available from the
inear fit of the temperature compensation grating, FBG1, showing the temper-



Fig. 4. (a) Wavelength shift of two FBGs with IOP increases; (b) wavelength shifts when IOP decreases.

Fig. 5. Graph of FBG2 wavelength shifts with IOP variation over the range from
5mmHg to 27mmHg (the linear fitted sensitivity – the slope of the graph – is
12.9� 0.2 p.m./mmHg).
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use of the second FBG, there was no need to apply it due to the stable
operating conditions of the experiment carried out. However, this may
not always be the case and thus it was seen as important to have the
facility for integral temperature compensation which could be provided
using the data in Fig. 2 (b).

4. Conclusion

In this work, a ‘smart’ contact lens sensor system has been developed,
based on the use of a small core optical fibre into which FBGs have been
written (including one to provide temperature compensation, as needed).
The sensor uses a small fibre diameter (of 50 μm) which can readily be
bent and thus easily integrated into a commercial contact lens. The smart
contact lens sensing system developed has two FBGs integrated into the
fibre, to allow temperature compensation of the sensor.

The work done to evaluate the performance of the device shows that
the ‘smart’ contact lens sensor thus developed has a sensitivity about
12.9� 0.2 p.m./mmHg when used to measure intraocular pressure in a
test carried out. The sensor has additional functionality in that temper-
ature influences could be compensated as needed to allow the sensor to
show real potential for continuous IOP measurement in a patient, even
when subjected to strong electromagnetic interference from exposure to
such sources during other hospital assessments. Thanks to the advantages
of easy integration of multiple FBGs with optical fibre, increasing the
number of FBGs to fully measure the intraocular pressure distribution is
4

possible. Given the sensitivity of the device, in light of the range of IOP
which is symptomatic of glaucoma, it shows significant potential for
continuous IOP measurement in human eyes and thus to aid glaucoma
management and therapy.
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