78 research outputs found

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Energy and Performance Management of Virtual Machines: Provisioning, Placement and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. Ho- wever, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations con- cerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utili- zation under workload independent quality of service constraints. These ap- proaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performan- ce degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth con- tribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consump- tion, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) archi- tecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of ser- vers with energy efficiency. Our sixth contribution is a Utilization Prediction- aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scala- bility, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource mana- gement by dynamically adjusting the utilization thresholds for each server in data centers.  </div

    Deep Learning Based Multi-Modal Fusion Architectures for Maritime Vessel Detection

    Get PDF
    Object detection is a fundamental computer vision task for many real-world applications. In the maritime environment, this task is challenging due to varying light, view distances, weather conditions, and sea waves. In addition, light reflection, camera motion and illumination changes may cause to false detections. To address this challenge, we present three fusion architectures to fuse two imaging modalities: visible and infrared. These architectures can provide complementary information from two modalities in different levels: pixel-level, feature-level, and decision-level. They employed deep learning for performing fusion and detection. We investigate the performance of the proposed architectures conducting a real marine image dataset, which is captured by color and infrared cameras on-board a vessel in the Finnish archipelago. The cameras are employed for developing autonomous ships, and collect data in a range of operation and climatic conditions. Experiments show that feature-level fusion architecture outperforms the state-of-the-art other fusion level architectures

    Anomaly-based Intrusion Detection Using Deep Neural Networks

    Get PDF
    Identification of network attacks is a matter of great concern for network operators due to extensive the number of vulnerabilities in computer systems and creativity of the attackers. Anomaly-based Intrusion Detection Systems (IDSs) present a significant opportunity to identify possible incidents, logging information and reporting attempts. However, these systems generate a low detection accuracy rate with changing network environment or services. To overcome this problem, we present a deep neural network architecture based on a combination of a stacked denoising autoencoder and a softmax classifier. Our architecture can extract important features from data and learn a model for detecting abnormal behaviors. The model is trained locally to denoise corrupted versions of their inputs based on stacking layers of denoising autoencoders in order to achieve reliable intrusion detection. Experimental results on real KDD-CUP'99 dataset show that our architecture outperformed shallow learning architectures and other deep neural network architectures. </p

    Self-adaptive resource management system in IaaS clouds

    Get PDF

    Energy-aware VM Consolidation in Cloud Data Centers Using Utilization Prediction Model

    Get PDF

    Enabling Green Computing in Cloud Environments: Network Virtualization Approach Towards 5G Support

    Get PDF
    Virtualization technology has revolutionized the mobile network and widely used in 5G innovation. It is a way of computing that allows dynamic leasing of server capabilities in the form of services like SaaS, PaaS, and IaaS. The proliferation of these services among the users led to the establishment of large-scale cloud data centers that consume an enormous amount of electrical energy and results into high metered bill cost and carbon footprint. In this paper, we propose three heuristic models namely Median Migration Time (MeMT), Smallest Void Detection (SVD) and Maximum Fill (MF) that can reduce energy consumption with minimal variation in SLAs negotiated. Specifically, we derive the cost of running cloud data center, cost optimization problem and resource utilization optimization problem. Power consumption model is developed for cloud computing environment focusing on liner relationship between power consumption and resource utilization. A virtual machine migration technique is considered focusing on synchronization oriented shorter stop-and-copy phase. The complete operational steps as algorithms are developed for energy aware heuristic models including MeMT, SVD and MF. To evaluate proposed heuristic models, we conduct experimentations using PlanetLab server data often ten days and synthetic workload data collected randomly from the similar number of VMs employed in PlanetLab Servers. Through evaluation process, we deduce that proposed approaches can significantly reduce the energy consumption, total VM migration, and host shutdown while maintaining the high system performance

    A metaheuristic method for joint task scheduling and virtual machine placement in cloud data centers

    Get PDF
    The virtual machine (VM) allocation problem is one of the main issues in the cloud data centers. This article proposes a new metaheuristic method to optimize joint task scheduling and VM placement in the cloud data center called JTSVMP. The JTSVMP problem composed of two parts, namely task scheduling and VM placement, is carried out by using metaheuristic optimization algorithms (MOAs). The proposed method aims to schedule task into the VM which has the least execution cost within deadline constraint and then place the selected VM on most utilized physical host (PH) within capacity constraint. To evaluate the performance of the proposed method, we compare the performance of task scheduling algorithms only with others that integrate both task scheduling and VM placement using MOAs, namely the basic glowworm swarm optimization (GSO), moth-flame glowworm swarm optimization (MFGSO) and genetic algorithm (GA). Simulation results show that optimizing joint task scheduling and VM placement algorithm leads to better overall results in terms of minimizing execution cost, makespan and degree of imbalance and maximizing PHs resource utilization
    corecore