
Verma, Jitendra Kumar and Kumar, Sushil and Kaiwartya, Omprakash and
Cao, Yue and Lloret, Jamie and Katti, CP and Kharel, R (2018)Enabling
Green Computing in Cloud Environments: Network Virtualization Approach
Towards 5G Support. Transactions on Emerging Telecommunications Tech-
nologies, 29 (11). ISSN 2161-3915

Downloaded from: http://e-space.mmu.ac.uk/620628/

Version: Accepted Version

Publisher: Wiley

DOI: https://doi.org/10.1002/ett.3434

Please cite the published version

https://e-space.mmu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/161893639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://e-space.mmu.ac.uk/view/creators/Verma=3AJitendra_Kumar=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Kumar=3ASushil=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Kaiwartya=3AOmprakash=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Cao=3AYue=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Lloret=3AJamie=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Katti=3ACP=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Kharel=3AR=3A=3A.html
http://e-space.mmu.ac.uk/620628/
https://doi.org/10.1002/ett.3434
https://e-space.mmu.ac.uk

i

Enabling Green Computing in Cloud
Environments: Network Virtualization Approach

Towards 5G Support
Jitendra Kumar Verma1, Sushil Kumar1, Omprakash Kaiwartya2, Yue Cao3,*, Jaime Lloret4, C. P. Katti1,

and Rupak Kharel5

1School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
{jitendra.verma.in@ieee.org, skdohare@mail.jnu.ac.in, cpkatti@yahoo.com}

2School of Science and Technology Nottingham Trent University, Clifton Campus, Nottingham, NG11
8NS, UK.

{omprakash.kaiwartya@ntu.ac.uk}
3Department of Computer and Information Sciences, Northumbria University, Newcastle, U.K.

{yue.cao@northumbria.ac.uk}
4Department of Communications, Polytechnic University of Valencia, Camino de Vera 46022,

Valencia, Spain
{jlloret@dcom.upv.es}

5School of Engineering, Manchester Metropolitan University, Manchester,M1 5GD, UK
{r.kharel@mmu.ac.uk}

Abstract

Virtualization technology has revolutionized the mobile network and widely used in 5G innovation. It is a way of computing
that allows dynamic leasing of server capabilities in the form of services like SaaS, PaaS, and IaaS. The proliferation of
these services among the users led to the establishment of large-scale cloud data centers that consume an enormous
amount of electrical energy and results into high metered bill cost and carbon footprint. In this paper, we propose three
heuristic models namely Median Migration Time (MeMT), Smallest Void Detection (SVD) and Maximum Fill (MF) that can
reduce energy consumption with minimal variation in SLAs negotiated. Specifically, we derive the cost of running cloud data
center, cost optimization problem and resource utilization optimization problem. Power consumption model is developed for
cloud computing environment focusing on liner relationship between power consumption and resource utilization. A virtual
machine migration technique is considered focusing on synchronization oriented shorter stop-and-copy phase. The complete
operational steps as algorithms are developed for energy aware heuristic models including MeMT, SVD and MF. To evaluate
proposed heuristic models, we conduct experimentations using PlanetLab server data often ten days and synthetic workload
data collected randomly from the similar number of VMs employed in PlanetLab Servers. Through evaluation process, we
deduce that proposed approaches can significantly reduce the energy consumption, total VM migration, and host shutdown
while maintaining the high system performance.

Index Terms

Mobility; Cloud computing; Energy efficiency; Virtualization; VM consolidation.

F

1 INTRODUCTION

C LOUD computing is a cost-effective model to deliver computing services such as Software as a Service (SaaS), Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS) on pay-as-you-go basis. It offers the benefit in terms of efficient

IT management and maintenance with changing business needs without even letting know about the upgrading process
to the clients. The proliferation of cloud computing led to the emergence of large-scale data centers around the world that
host thousands of computing node facilities. These data centers consume enormous amount of electrical energy due to the
huge hardware infrastructure associated. According to a report published by Environmental Protection Energy (EPA), the
current power consumption by data centers in the US is more than 3% of the total electricity usage by the country that
becomes approximately 1.5%–3% of global energy consumption which is growing about 12% every year [1]. Nowadays,
data centers worldwide are originating more than 43 million tons of CO2 per year and adversely affecting the environment

*Corresponding Author: yue.cao@northumbria.ac.uk

ii

towards global warming. Besides of the economic impact, the heat and carbon content generated by the cooling system of
the data centers are expected to overtake the aviation industry by 2020 [2].

Fifth Generation (5G) cellular wireless networks is a promising solution towards high data rate demanding appli-
cations, improved quality-of-experience, end-to-end latency and lower energy consumption [3]. Liang et al. proposed an
information-centric wireless network virtualization architecture to integrate wireless network virtualization and information-
centric networking for software-defined 5G mobile wireless networks [4]. The key components of this architecture are
radio spectrum resource, wireless network infrastructure, virtual resources, and information-centric wireless virtualization
controller [5]. Virtual resources includes content-level slicing, network-level slicing, and flow-level slicing and powers
virtual resource allocation. The in-network caching strategy is formulated as an optimization problem with the fact that the
gain is not only virtualization but also in-network caching. Wang et al. suggested a packet switching scheme to improve
performance of wireless network virtualization by locating frames into user space and placing control and data frame in
kernel space [6] . In [7], a hierarchical control based cell clustering model is suggested to integrate heterogenous wireless
network and to coordinate among network resources towards optimizing resource utilization.

Virtulization is the central technology behind 5G support and success of cloud computing paradigm for resource sharing
to meet rising level of resource demand in daily resource request patterns and facilitating ultra-short latency [8, 9]. Cloud
computing helps to reduce carbon footprint of data centers and saves operating cost by improving resource utilization of
data centers using virtualization technologies. The improved resource utilization cut downs higher energy consumption
required for running cloud data centers. Virtualization technology allows creation of multiple isolated partition of resource
capabilities available with computing nodes and make those partitions able to run multiple guest Operating Systems
(OS) at the same computing node. These isolated partitions running guest OS share computing resources and are called
Virtual Machines (VM). Virtualization technologies enable live migrations of VMs among computing nodes without even
disrupting the application services hosted on VMs. The property of live migration offered by cloud infrastructure is the
core heart of VM consolidations that helps to improve the resource utilization of a physical host, by migrating VMs from
least loaded hosts to normal loaded hosts. In this way, smaller resource capabilities available with physical hosts are able
to handle higher incoming workloads and thus reduce computing and cooling energy requirements [10, 11, 12, 13, 14].

In order to cope up with energy inefficiency problem of cloud infrastructure, we leverage the benefit of VM consolidation
model for consolidating VMs on relatively small number of physical hosts and switch rest of the hosts in sleep/standby
mode to minimize energy consumption [15]. Standard Performance Evaluation Corporation (SPEC) provides benchmark
on power consumption data that are utilized in the measurement of total power consumption by a large scale cloud data
center as summation of power consumption by the individual physical host [16]. We apply VM consolidation mechanisms
by reducing active physical machines with power consumption data of servers on different load levels for measurement of
power consumption. In [17], expected energy consumption model is suggested for cloud computing systems to calculate
task sojurn time and mean energy consumption for the hosts. It optimize energy consumption using deadline aware task
scheduling algorithm by reducing variance of service time based on similar tasks. However, it is impractical to identify the
task sojurn time and expected energy consumption until the jobs are finished. Moreover, deadline aware task scheduling
causes extra penalty on the system and increases the cost of scheduling. VM consolidation model has been suggested
using reinforcement learning that utilize Q-learning method to learn effective control policy for a given task without prior
learning of environment [18]. However, Q-learning method turns out to be slower and may trap in the local minima.
Ref. [19] provides regression based utilization prediction model that approximates not only the future CPU utilization
but also memory utilization of VMs and hosts along with model validation using PlanetLab and google cluster data
[20, 21]. However, the model is limited to liner relationship and it is so sensitive to outliers. A utility based model has
been suggested that apply frequency settings prior to VM scheduling for consolidation to force scheduling under current
actual utilization rather than unreal utilizations [22]. Similarly, our approach triggers server offloading on current server
utilization rates if it exceeds the dynamic utilization threshold value. Ant colony meta-heuristic has been suggested to
optimize VM placement on physical hosts that uses artificial ants to consolidate VMs on reduced number of active hosts
based on three resource dimensions namely, CPU, memory and network Input/Output [23]. However, we focus our study
on computation part that depends on CPU utilization rate and major source of energy consumption.

In this paper, we address the problem of energy efficiency in Cloud computing environment by adopting the methodol-
ogy of VM consolidation models. We propose three novel energy efficient heuristic models to optimize energy consumption
on cloud data centers. The main contributions in this work are as follows:

(i) We formulate the cloud data center running cost as a cost optimization problem by considering the costs of running
single physical host as a basic unit for cost calculation. It considers cost of power consumption and cost incurred due
to penalties associated with hosts suffering from SLA violation due to the host overutilization.

(ii) We formulate resource utilization optimization problem to identify the availability of rooms for accommodating one
or more VMs on same physical hosts to understand the consolidation process and optimize VM allocation in cloud
environments.

(iii) We propose three novel heuristic models namely, Median Migration Time (MeMT), Smallest Void Detection (SVD) and
Maximum Fill Technique (MFT) to optimize the VM allocation and consolidation process.

(iv) We derive a new metric called total host shutdown for performance evaluation of the proposed heuristic models.
(v) We perform simulations for the proposed algorithms by extending CloudSim simulation toolkit to evaluate the

performance of the proposed methods in composition with the benchmark algorithms for VM consolidation.

iii

Rest of the paper is organized as follows. Section 2 provides literature review and discuss related work, Section 3
presents the detail of the proposed energy aware virtualization models, Section 4 discusses the performance evaluation of
the proposed models compared with the baseline benchmark methods. Section 5 concludes the paper.

2 RELATED WORK

The proposed work is built upon the following considerations. An important feature of online power management is the
ability of data center to deal with heterogeneous server configuration. Nathuji and Schwan proposed resource management
strategies for VM consolidation that achieve efficiency through local and global policies using live migration of VMs from
overloaded servers [24]. At the local level, the system applies power management policies of guest OSs. On the other hand,
global manager keeps an eye the current resource allocation by the local manager. Global manager implements its policy on
local resources to decide whether the VM placement is required. They did not considered any specific policy for automatic
resource management at the global level.

Kusic et al. proposed the idea of Limited Lookahead Control (LLC) where they consolidate VMs as sequential opti-
mization using LLC. The LLC explores for state-space trajectory within a horizon of length h [25]. They used Kalman filter
to predict the number of impending arrivals to deal with time varying nature of workload and to perform necessary re-
allocations [26]. Their model requires simulation-based learning for the application-specific adjustments, Such adjustments
cannot be implemented by IaaS Cloud providers such as Amazon EC2. Moreover, the execution time of the optimization
controller of their model approaches to 30 minutes even for 15 nodes. Such situation is not suitable for large-scale
cloud systems. On the contrary, the proposed heuristic model in this paper aims to achieve high performance for large
infrastructure and does not require simulation based learning prior to deployment of application in real cloud system.

Verma et al. proposed the idea of power and migration cost-aware placement of applications in a virtualized environ-
ment based on bin-packing problem that suggests for packing not more than 11

9 OPT + 1 balls in a bin where OPT is
given by the optimal solution [27] [28]. To represent heterogeneous environment they considered heterogeneously sized
bins where hosts correspond to the bins and VMs to the balls. Meanwhile, the proposed algorithm does not ensure the
Service Level Agreement (SLA) negotiated due to workload variability in the case of PlanetLab server traces and random
workload traces both. Workload traces of PlanetLab servers were collected as a part of CoMon project which is a monitoring
infrastructure for PlanetLab servers located at more than 500 places around the world [20].

Gmach et al. proposed host load simulator that forecast workload’s time-varying resource requirement based on
historical data to suggest appropriate simulated server [29]. The simulated host determines the workload demand gap
for the resources by using fair share scheduling strategy static threshold for VM migrations in their work. Similarly,
Beloglazov et al. proposed static threshold based approach with minimum migration technique for dynamic consolidation
of workload [30]. However, static threshold based approach is not suitable for an Infrastructure-as-a-Service (IaaS) type
deployment model of Cloud computing environment because static values based thresholds are not able to cope up with
dynamic and unpredictable workload [31]. On the contrary, we have chosen mechanism of choosing upper and lower
thresholds to be dynamic in consonance of impending dynamic workload to the hosts.

Host offloading at runtime with resource near the device at the logical edge is a is a challenging task due to the conflict
between resource demand and user experience and dynamically changing context that makes for good or bad offloading
strategies [32]. Beloglazov et al. proposed modified best fit decreasing heuristic for VM placement and proposed minimum
migration policy of VM selection on overloaded hosts [33]. They introduced double threshold (upper and lower) method
to keep utilization of hosts between the thresholds. In their another work, they proposed several adaptive heuristics for
energy efficient allocation of resources to overcome the problem of static threshold values [15]. Similarly, we adopted double
threshold method to keep the utilization level of a host at optimum level where lower threshold is depicted indirectly by
choosing minimum utilized host as the underloaded host.

Kistowski et al. proposed several Interpolation methods like Nearest Neighbour Interpolation, Linear Interpolation,
Shepard Interpolation and Polynomial Interpolation in to identify the power consumption and compared them to deter-
mine the accuracy of the proposed methods to select the best interpolation method using independent reference dataset
containing a large set of data points [34]. On the contrary, we apply the standard power consumption details on given CPU
utilization of hosts to estimate energy consumption for specified duration under the experimental setup used in this paper.

Live migration is a core function to replace running VMs seamlessly across distinct physical hosts [35, 36, 37]. It refers to
the moving of a VMs that are in execution between different physical hosts without even disrupting its services. At the end
of live migration process, the CPU, memory, storage, and network connectivity of the VM are transferred from the original
guest machine to the destination [38]. In virtualized data centers, live migration provides a significant benefits that are
extremely powerful tool for system management in cloud computing such as virtual server mobility without disruption of
services, VM load balancing, fault tolerance, power management and other applications [24, 39, 40, 41, 42].

3 ENERGY AWARE VM CONSOLIDATION

3.1 Problem Specification
In data centers jobs are majorly classified into two categories including Compute intensive and Data intensive [43]. VM
consolidation models for energy efficiency majorly rely upon CPU utilization of servers. This fact makes it difficult to build

iv

a precise analytical power consumption model for modern multi core CPUs due to the unavailability of empirical data
on all the variables involved. Meanwhile, We identified following issues with existing cloud computing models: (i) IaaS
provider needs to find efficient packing solution for VM provisioning across a large pool of servers, (ii) For packing these
VMs on non-overloaded hosts, several live migrations are required, (iii) Live migration of VMs leaves several physical
hosts to be underloaded that needs to be either switched into standby mode or turned off, (iv) Waking up servers in active
state causes extra penalties that should be reduced by minimizing host shutdowns.

VM consolidation is the process of consolidating large number of VMs on fewer physical hosts to minimize total
energy consumption. It signifies that servers are more energy efficient at higher utilization level and less efficient at lower
utilization due to the ideal power consumption around 50% power consumption at full utilization level [44]. Two major
problems with VM consolidation includes minimizing total cost of running a physical host; and minimizing total cost of
the penalty caused by SLA violations.

Every CPU clock consumed during active, idle and sleep period of a host causes power consumption and contribute
towards total cost of running physical hosts [45]. Meanwhile, the SLA violations occur when the total demand for the
CPU resources exceed the available CPU capacity of a particular physical host. Let us assume that Cp is the cost of
power required for running an active physical host and Cv is the cost of SLA violation by a physical host due to excessive
resource demand. We define cost of running a cloud data center as cost optimization problem in (1) and resource utilization
optimization problem for a host in (2).

minimize
C

C =
m∑
i=0

 T∑
t=t0

Cp m∑
i=0

ati + Cv

m∑
j=0

vtj

subject to Cp ≥ 0,

Cv ≥ 0,

ati, vtj ∈ 0, 1,

Cp, Cv ∈ R+.

(1)

and,

minimize
Z

Z = Tu,j −Nu,j
subject to Tu,j −Nu,j > 0,

Tu,j , Nu,j ≥ 0,

Tu,j , Nu,j ≤ 1,

 (2)

whereNu,j =
∑n
i=1 Υ(VMi,j), ati ∈ {0, 1}, ati is either “0” or “1” for inactive and active hosts, respectively. similarly, vtj ∈

{0, 1}, vtj is “1” if the host is suffering from SLA violations and “0” if there are no SLA violations for the corresponding
host. T is the total period of observation, t0 is the starting point of time when observation starts. Z is the resource wastage
due to gap between utilization threshold Tu,j of host j and Nu,j is utilization of host j when host runs below the Tu,j ,
Υ(·) provides ratio of MIPS allocated to the VM and MIPS capacity of the host, and VMi,j is ith VM executing over host
j. Z should be minimized to optimize VM allocation for improving resource utilization of the host and in nutshell global
utilization of Cloud data center.

As can be seen in Fig. 1, VM consolidations to fewer hosts takes four steps that S1, S2, S3 and S4. Global monitoring
module keeps track of CPU utilizations of m hosts in step S1 that declare a host to be overloaded, underloaded or
normal loaded. VM selection criteria is applied in S2 to identify suitable VMs from overloaded and underloaded hosts for
offloading them using live migration of VMs in S3. In S4, VM allocation takes place to optimize VM placement in physical
hosts.

TABLE 1: Power consumption benchmark data (Watt)

Physical Host 0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

3.2 Power Model
In cloud computing environment, a typical server rarely experience CPU utilization more than 50% that are provisioned
with an additional capacity to deal with load spikes of high variations. Recent studies have affirmed that power con-
sumption are described by linear relationship between power consumption and CPU utilizations where CPU is utilized in

v

ServerServer ServerServer ServerServer

. . .

Overloaded Hosts
ServerServer ServerServer ServerServer

. . .

Underloaded Hosts
ServerServer ServerServer ServerServer

. . .

Normal Load Hosts

ServerServer ServerServer ServerServer

. . .

Normal Load Hosts
ServerServer ServerServer ServerServer

. . .

Underloaded Hosts

. . .

Standby Hosts

Global Monitoring Module

VM Selection

VM Allocation
VM

Consolidation

VM

Migrations

1S

2S

3S

4S

Fig. 1: In architecture shwn above, VM consolidation has two steps of VM selection and VM allocation. Before making
decision of VM consolidation, all hosts are monitored for being overloaded, underloaded and normal load. VMs are
selected and migrated from overloaded host to the normal loaded or underloaded hosts.

timesharing manner by various tasks executing in VMs. For a single server system, the linear relationship can be established
as shown in (3).

Ptotal = Psleep + Pnosleep (3)

where Psleep accounts for power consumption while server is in standby state (Pstandby) and server switches from sleep
mode to no-sleep mode (Ptransition). Meanwhile, Pnosleep accounts for the sum of static power consumption (Ps) when
host is ideal and when host is active and performing computation (c · V 2 · f) where c is constant, V is voltage applied and
f is CPU clock frequency.

In this paper, total power consumption by a data center constitutes server running cost, cooling device cost and network
power consumption cost [46]. Power consumption is triggered by CPU utilization ratings (host’s states) given by standard
power consumption benchmarks [16] for the servers as shown in Table 1. Assuming, Phost to be power consumption by
physical hosts, Pcooling to be power consumption in cooling data center, and Pnetwork to be power consumption network
equipments, then power consumption by the data center can be modeled as provided in (4).

Pdatacenter = Phost + Pcooling + Pnetwok (4)

where Phost is
∑m
i=1 Phi , Pcooling is

∑p
j=1 Pj , and Pnetwork is PToR+PAgr+PCR. In this context Phi is power consumption

corresponding to ith physical host, Pj is power consumption in cooling corresponding to the jth rack of active hosts, PToR
is power consumption by switches on top of racks, PAgr is power consumption by aggregation layer switches and PCR is
power consumption by core router of the network.

3.3 Live Migration of VMs
In the live migration process, physical memory image is pushed across network to the new destination host in several
rounds as pages while the source VM continues running on old host. The pages that are transferred successfully to the
new host machine are flagged in original VM at source the host (pre-copying). During the transfer, the pages might get
dirty and has to be resent to ensure memory consistency. After several rounds of synchronization, a very short stop-and-
copy phase is performed to transmit the remaining pages for resuming execution of VM on new destination. Meanwhile,
the cost of live migrations varies significantly for different workloads due to variety of VM configurations and workload
characteristics. The relatively small stop-and-copy phase results in to a VM downtime that consists of following two parts
and shown in (5): (i) Time spent on transferring remaining pages during the stop-and-copy phase (Tn), and (ii) Time spent
on resuming execution of VM at the destination host (Tresume).

Tdowntime = Tn + Tresume (5)

vi

Tu

Cu

(a) Overloaded Host with
Cu > Tu

Tu

Cu

(b) Non-Overloaded Host
with Cu < Tu

Tu

Cu

(c) Under loaded Host
with Cu << Tu

Fig. 2: Delineating states of overloaded, non-overloaded servers and underloaded host

3.4 Proposed Energy Aware Algorithms
In this section, we propose host offloading techniques to bring the host utilization below the host utilization threshold
and improve the host utilization to omptimize the energy consumption. Let us assume, HO and HU are the representation
of hosts that are overloaded and underloaded, respectively. The overloaded and non-overloaded hosts are presented in
Fig. 2(a) and Fig. 2(b), respectively where as Fig. 2(c) shows an underloaded host with CPU utilization much less than
utilization threshold of the host. The proposed host offloading methods come in action when the host h ∈ HO. The Host
is considered to be underloaded that is h ∈ HU if the host is experiencing minimum utilization among all the hosts and
therefore all the VMs shall migrate from this host. The proposed host offloading techniques, when h ∈ HO , are as follows
in the subsequent sections.

3.4.1 Median Migration Time
The best VM selection policy in [15] was shown to be Minimum Migration Time (MMT) that selects the VM v with the
minimum migration time relatively to other VMs. The migration time is the ratio of amount of memory utilized by VM i
to the bandwidth spare with physical host j over which ith VM is executing as shown in (6).

ttransferi =
Cmemi,j

hBWj
(6)

where Cmemi,j is memory utilized by ith VM on jth host, hBWj is spare bandwidth to the jth host, and ttransferi is VM
migration/transfer time.

A physical host or cloud sever includes multiple processors and a large quantity of memory that demands a significant
amount of electrical power for their operations involved. Much of electrical power consumed by these processors and
memory dissipates as heat content resulting into creation of hot-spots. In data centers, hot-spots are a serious issue due
to excessive temperature in one or more areas causing damage of equipments. Meanwhile, the MMT fails to address the
issue of hot-spots causing few PMs to be highly overloaded. In addition to this, the MMT is unable to address the high VM
migrations from the overloaded host necessitating several more live migrations. For instance, an overloaded host is filled up
by all the VM instance types (Table 3) that is t1.medium, t1.xlarge, t1.small, and t1.micro then MMT force the migration
of one or more instances of t1.micro due to its primary criteria of selecting a VM with lowest transfer time to make the
host non-overloaded. This condition does not ensure restriction on total live VM migrations. Moreover, the process of live
migration of VMs increases the task completion time that are in execution due to the small downtime associated with VM
transfer from source host to the destination host that disrupts task execution on VM. High VM migrations exacerbates
energy consumption because of the load transfer factor in the part of network, increased task completion time, and VM
migrations overhead in MMT.

We introduce Median Migration Time (MeMT) policy to address the issue of MMT. This technique is centered around
the memory possessed by a VM. MeMT not only help to cope up with hot-spot issue but also reduce the VM migrations. the
hotspot in fewer migrations often leads to a decrease in SLA violation. Therefore, this study proposes VM selection policies
that resolve hot-spots spending fewer migrations, resulting in lower energy consumption and SLA violation percentage.
For this, VMs running on overloaded PM are ordered by ratio of memory utilized by the VM and spare bandwidth with
host. Furthermore, we take the list of VMs on overloaded host and order them by memory-bandwidth ratio and pick the
VM at median location of the ordered list. We define three cases of identifying median in different situation of VM list size
on overloaded host are as shown in (7). The VM selection function for MeMT is depicted in Fig. 3.

meadian =

MO = x/2 + 1 if x mod 2 ≡ 0,

ME,l = bx/2c if x mod 2 6≡ 0,

ME,u = bx/2c+ 1 if x mod 2 6≡ 0.

(7)

vii

VM1 VM2 VM3 VM4 VM5 VM6

Selected VM

VM7

(a) If (|VM | mod 2 ≡ 0), and
VMmedianE ,l,j is not in migration

VM1 VM2 VM3 VM4 VM5 VM6

Selected VM

(b) If (|VM | mod 2 ≡ 0), and
VMmedianE ,l,j is not in migration

VM1 VM2 VM3 VM4 VM5 VM6

Selected VM

(c) If (|VM | mod 2 ≡ 0) and
VMmedianE ,l,j is in migration

Fig. 3: Median Migration Time Based VM Migration

Algorithm 1: Median Migration Time Heuristic
Input: Pm–Power Model, hostList
Output: MigrationMap

1 begin
2 Initialize Simulation Parameters
3 for host in hostList do
4 Tu ←− thresholdV alue(type)
5 if hostUtilization > Tu then
6 vmList← getMigratableV ms(host)
7 vmList← sortByV mTransferT ime(vmList)

/* Descending order */
8 if (vmList mod 2 6= 0) ∧ VMMO,j

then
9 vmToMigrate←

∣∣ vmList
2

∣∣+ 1
/* Choose VM available at median location when vmList size is odd in length

*/

10 else if (vmList mod 2) = 0) ∧ VMME,j then
11 vmToMigrate←

∣∣ vmList
2

∣∣
/* Choose VM available at upper median location when vmList size is even in

length and this VM is not in migration */

12 else
13 vmToMigrate←

∣∣ vmList
2

∣∣+ 1
/* Choose VM available at lower median location rest of the cases */

14

15 vmsTomgrate.add(vmToMigrate)

16 migrationMap.add(getNewVmPlacement(vmsToMigrate))
17 vmsToMigrate.clear()

/* Nullify the variable vmsToMigrate after the loop */
18 forall the host in hostList do
19 if isHostMinimumUtilized then
20 vmsToMigrate← host.getV mList() /* All of the VMs migrates */

21 vmToMigrate.add(vmToMigrate)

22 migrationMap.add(getNewVmPlacement(vmsToMigrate))
23 return migrationMap

viii

where “x mod 2 ≡ 0” and “x mod 2 6≡ 0” refers to the situation when x and y are even and odd in length, respectively.
ME,l =

⌊
x/2

⌋
andME,u =

⌊
x/2

⌋
+ 1 are the lower median and upper median when list size even. Based on VM transfer

time from one host to another host, VM ordering in descending order of VM transfer-time is shown in (8).

vmList = {∀α, β ∈ V | t(α) ≥ t(β)} =

{
∀α, β ∈ V

∣∣∣∣Cmemu (α)

hj
≥ Cmemu (β)

hj

}
(8)

where α and β refer to the ith and (i + 1)th VMs on overloaded host Pj , ti,j(·) provides transfer time of ith VM running
over jth host, and VMmem

u (·) provides memory utilization by the VM. After application of (7) on ordered list of VMs
obtained, VMs are selected for migration from overloaded hosts in the following manner as shown in (9).

v =

VMMO,j if (|VM | mod 2 6≡ 0) and
B(VMMO,j) = 0,

V MME,l,j if (|VM | mod 2 ≡ 0) and
B(VMME ,l,j) = 0,

V MME,u,j otherwise.

(9)

B : x→ y, where x ∈ VM and y ∈ {0, 1}

where VMmedianO,j refers to the VM available at median location (i.e. |VM |2 + 1) when VM list size is odd in length,
VMmedianE ,l,j refers to the VM available at lower-median location (i.e. |VM |2) when VM list size is even in length, and
VMmedianE ,u,j refers to the VM available at upper-median location (i.e. |VM |2 +1) when VM list size is even in length. B(·)
is a boolean function that returns 0 when its argument corresponding to the VM on overloaded host is not in migration.
Stepwise illustration of MeMT (Algorithm 1) is summarized below:

1) Step-1: Power model Pm and hostList is supplied.
2) Step-2: Simulation parameters are initialized.
3) Step-3–16: for loop detects overloaded hosts and VMs are arranged in descending order of VM migration time. VM

available at median location of the list according to the criteria provided in (7) is set for migration to offload the host
if this VM is not already under migration. Furthermore, the host is evaluated for overloading and step continues until
the host will become non-overloaded. It continues until all the hosts are processed.

4) Step-16–17: All the migrated VMs are optimally packed/placed on active physical machines according to the constraint
11
9 OPT . After allocation of VMs flush the memory variable containing list of those VMs which are selected for

migration.
5) Step-18–21: Hosts are detected for undertilized host. Minimum utilized host among all hosts is declared underutilized

host and all VMs from this host are migrated to pack over other active hosts.

3.4.2 Smallest Void Detection Technique
This technique is centered around the overloading detection mechanism that allow to consolidate VMs on hosts to improve
CPU utilization of the hosts. Smallest Void Detection (SVD) technique aims at minimizing the gap between CPU utilization
threshold and current utilization of CPU when former is greater than later one. We refer this gap as “Void” and it is
calculated by finding V oid = |Tu − C ′u|. C ′u is calculated as follows in (10).

C ′u =

∑n
i=1 ||C

cpu
i,j ||

||hcpuj ||
and Tu > Uc (10)

where Tu is CPU utilization threshold for a host, C ′u current CPU utilization for a host, ||Ccpui,j || is absolute value of Mips
(i.e.) CPU allocated to the host, pcpuj is Mips owned by jth host.

Cu − Tu > 0 indicates that host is overloaded while Cu − Tu ≤ 0 marks a host as non-overloaded. To make a host
non-overloaded we sort the vmList at very first place in descending order of CPU utilizations by the VMs as shown in
(11). We propose following two criteria for VM migration if a host is found to be overloaded: (i) Migrate a VM from sorted
vmList existing at 0th location until following occurs; (ii) If migrating next VM from sorted sequence makes host to be
non-overloaded then identify a VM that causes smallest possible void between Tu and Cu as described in (11).

vmList =
{
∀α, β ∈ Vj

∣∣∣Ccpuu (α) ≥ Ccpuu (β)
}

(11)

where α and β belongs to set of VMs Vj on overloaded host pi, VM cpu
u (·) provides absolute value of CPU utilization of

corresponding VM. While selecting a VM for migration to bring down CPU utilization below utilization threshold, may
create larger void between Cu and Tu and may generate unnecessary VM migrations, therefore, SVD selects such VM
which creates smaller void between Cu and Tu as shown in Fig. 4(a) and Fig. 4(b).

ix

Algorithm 2: Smallest Void Detection Heuristic
Input: Pm–Power Model, hostList
Output: migrationMap

1 begin
2 Initialize Simulation Parameters
3 for host in hostList do
4 Tu ←− thresholdV alue(type)
5 if hostUtilization > Tu then
6 vmList← getMigratableV ms(host)
7 vmList← sortByCpuAllocation(vmList)

/* Descending order */
8 if hostUtilization− ||Ccpui=0,j || ≥ Tu then
9 vmToMigrate← VMi=0,j

/* Migrates largest VM by CPU allocation when its migration does not cause
host utilization to fall below Tu */

10 else if hostUtilization− ||Ccpui=0,j || < Tu then
11 vmToMigrate← vmList.getIndex(Procedure smallestV oid(host))

/* Migrates a VM that creates smallest void between Tu and host
utilization, when migration of VM at 0th index of vmList cause utilization
fall below Tu */

12 else if hostUtilization < Tu then
13 vmToMigrate← φ

/* No VM migraton due to empty set φ */

14 vmsToMigrate.add(vmToMigrate)

15 migrationMap.add(getNewVmPlacement(vmsToMigrate))
16 vmsToMigrate.clear()

/* Nullify the variable vmsToMigrate after the loop */
17 for host in hostList do
18 if isHostMinimumUtilized then
19 vmsToMigrate← host.getV mList() /* All of the VMs migrates */

20 vmsToMigrate.add(vmToMigrate)

21 migrationMap.add(getNewVmPlacement(vmsToMigrate))
22 return migrationMap

Procedure smallestVoid(host)

1 smallestVoid(host) begin
2 vmList← getMigratableV ms(host)
3 voidLis[1 . . . |vmList|]
4 for VM in vmList do
5 if VM is in Migration then
6 voidList[1 . . . |vmList|]← Double.MAX

/* Maximum value generated by Double wrapper class of Java */

7 else if hostUtlization− |VM | ≥ Tu then
8 voidList[1 . . . |vmList|]← Double.MAX

/* Maximum value generated by Double wrapper class of Java */

9 else if hostUtlization− |VM | < Tu then
10 voidList[1 . . . |vmList|]← Tu − ||VM cpu

i,j ||
/* Size of V oid generated by migration of VMi,j */

11 index← findIndexOfSmallestV alue(voidList1 . . . |vmList|)
12 return index

x

VM1 VM2 VM3

Cu,1

Cu,2

Cu,3

Tu

Cu

(a) Possible Voids on Host due to VM migration

VM1 VM2 VM3 VM4 VM5 VM6

Selected VM

(b) Largest VM Selection with smallest Void (i.e.
Tu − VMi)

Fig. 4: Smallest Void Detection Based VM Migration

v =

φ if hj 6∈ HO
VM cpu

i=0,j if hj ∈ HO and Cu − ||Ccpui=0,j || ≥ Tu,
V Mi=τ,j if hj ∈ HO and Cu − ||Ccpuτ,j || < Tu.

(12)

where,

τ = min
z∈VM

f(z)

= min

{
∀i ∈ VM

∣∣∣voidList[i], where 0 ≤ i ≤ |VM |
}

and,

voidList[i] =

Double.MAX if B(VMi,j) = 1,

Double.MAX if Cu − ||Ccpui,j || ≥ Tu,
Tu − ||VM cpu

i,j || if Cu − ||Ccpui,j || < Tu.

where VM cpu
u (·) indicates v is VM selected for migration,HO be the set of overloaded PMs, |VM | ∈ N, |VM | is cardinality

of set VM and N is a natural number, where ||Ccpui,j || is absolute value of CPU’s Mips allocated to the ith VM executing over
jth PM, (Tu − ||Ccpui,j ||) is size of void, Double.MAX is the maximum value generated from Double primitive wrapper class
of Java, B(VMi,j) = 1 indicates ith VM on jth host is in migration. Stepwise illustration of SVD (Algorithm 2) is given
below:

1) Step-1: Power model Pm and hostList is supplied.
2) Step-2: Simulation parameters are initialized.
3) Step-3–14: for loop detects overloaded hosts and VMs are arranged in descending order of CPU utilization rates.

VMs are set for migration from the overloaded hosts according to the criteria shown in (12). If migration of the VM
available at 0th index of the list does not causes to fall utilization level of the host below the utilization threshold of
the host then VM indexed at 0th location of the list will set for migration. Otherwise, a VM whose migration will leave
minimum void between utilization threshold of the host and utilization level of the host on removing that VM will
set for migration. For this purpose an auxiliary list of void is created in the following manner and index of minimum
cell value will be chosen to identify the index of VM to be migrated as summarized below and shown in Procedure
“smallestVoid”:

a) If corresponding VM is under migration then set cell value as the maximum value provided by “Double” wrapper
class.

b) Subtracting CPU utilization rates of corresponding VM from current utilization level of host becomes value greater
than equal to utilization threshold (will never occur) then set the cell value as the maximum value provided by
“Double” wrapper class.

c) Otherwise set value of difference of current CPU utilization host and CPU utilization rates of corresponding VM.
Furthermore, the host is evaluated for overloading and step continues until the host will become non-overloaded. It
continues until all the hosts are processed.

4) Step-15–16: All the migrated VMs are optimally packed/placed on active physical machines according to the constraint
11
9 OPT . After allocation of VMs flush the memory variable containing list of those VMs which are selected for

migration.
5) Step-17–21: Hosts are detected for undertilized host. Minimum utilized host among all hosts is declared underutilized

host and all VMs from this host are migrated to pack over other active hosts.

xi

3.4.3 Maximum Fill Technique
This technique is also centered around host overloading detection criteria. We went one step ahead in this method to
consolidate VMs more tightly on hosts running beyond host utilization thresholds. Maximum Fill Technique (MFT) aims
upon migration of VMs from overloaded host in such a way that leads to packing of a host with high numbers of VMs
to pack a host tightly while host is in active mode. Let us assume that a random host has n VMs executing over it then
current host utilization is ratio of sum of MIPS allocated to the VM that is

∑n
i=1 C

cpu
i,j and total MIPS capacity of the host

hj . Let Vj be a set of VMs currently allocated to the host j, MFT finds a VM v that satisfies the condition given in (13) and
depicted in Fig. 5(a)–5(b).

vmList =
{
∀α, β ∈ Vj , Pj

∣∣∣Ccpuu (α) ≤ Ccpuu (β)
}

(13)

where α and β are the VMs from VM pool available on jth overloaded host Pj , VM cpu
u (·) is the CPU utilization. In the

sorted sequence of VM, MFT selects a suitable VM that either causes minimum increase in CPU allocation to the VM.

Algorithm 3: Maximum Fill Technique Heuristic
Input: Pm–Power Model, hostList
Output: MigrationMap

1 begin
2 Initialize Simulation Parameters
3 for host in hostList do
4 Tu ←− thresholdV alue(type)
5 if hostUtilization > Tu then
6 vmList← getMigratableV ms(host)
7 vmList← reverseSortByCpuAllocation(vmList)

/* Ascending order */
8 nmax ← |vmList| − 1
9 if (Cu − Tu > VM) ∧ (n = nmax) then

10 vmToMigrate← VMi=n,j

/* If all the VMs on overloaded host are smaller in CPU allocation from
(Cu − Tu) while Cu > Tu */

11 else if (Cu − Tu ≤ VM) ∧ (0 ≤ i < nmax) then
12 vmToMigrate← VMi,j

/* If one or more VMs on overloaded host are large in CPU allocation from
(Cu − Tu) while Cu > Tu */

13 else if (Cu − Tu ≤ VM) ∧ (i < nmax) then
14 vmToMigrate← φ

/* No VM migraton due to empty set φ */

15 vmsToMigrate.add(vmToMigrate)

16 migrationMap.add(getNewVmPlacement(vmsToMigrate))
17 vmsToMigrate.clear()

/* Nullify the variable vmsToMigrate after the loop */
18 for host in hostList do
19 if isHostMinimumUtilized then
20 vmsToMigrate← host.getV mList() /* All of the VMs migrates */

21 vmsToMigrate.add(vmsToMigrate)

22 migrationMap.add(getNewVmPlacement(vmsToMigrate))
23 return migrationMap

Assuming V oid = (Tu − ||Ccpui,j ||), a host will run below its efficiency as much as large the void size. Meanwhile,
migrating the largest possible VM in vmList from overloaded host may create a large size void. Moreover, SVD does
not provide a suitable criteria to maximize the server utilization up to its capacity. A server is marked as overloaded if
Cu > Tu holds true. To cope up with void size problem, we scan the vmList obtained from (13) and identifies a VM that
fulfill following condition as shown in (14) in consonance with (15).

Cu − Tu < VM cpu
index,j where 0 ≤ index ≤ nmax (14)

xii

Cu,3

VM1 VM2 VM3

Cu,2

Cu,1

Tu

Cu

,

(a) Possible Voids on Host due to VM migra-
tion

VM1 VM2 VM3 VM4 VM5 VM6

Selected VM

(b) Largest VM Selection with MFT criteria

Fig. 5: Maximum Fill Technique Based VM Migration

v =

∅ if Cu − Tu > Ccpui,j and i < nmax
Vi=n,j if Cu − Tu > Ccpui,j and n = nmax
VMi,j if Cu − Tu ≤ Ccpui,j and 0 ≤ i < nmax

(15)

where nmax = (|VM | − 1) and |VM | is the maximum possible size of vmList on overloaded host, “v” is the VM selected
for migration on applying MFT criteria on overloaded host. VMi,j represents a VM i executing over jth host. Cu,j is
current utilization of jth host and Tu,j utilization threshold of jth host. Stepwise illustration of MFT (Algorithm 3) is given
below:

1) Step-1: Power model Pm and hostList is supplied.
2) Step-2: Simulation parameters are initialized.
3) Step-3–15: for loop detects overloaded hosts and VMs are arranged in descending order of CPU utilization rates.

VMs are set for migration from the overloaded hosts according to the criteria shown in (15) and summarized as given
below:

a) No migration if CPU utilization rates of VM smaller than gap between current utilization (Cu) of host and utilization
threshold (Tu) of index of VM is other than maximum index of vmList (nmax).

b) Migrate VM at highest (nmax) index of vmList CPU utilization rates of VM smaller than gap between current
utilization (Cu) of host and utilization threshold (Tu).

c) Migrate a largest VM at index other than (nmax) whose CPU utilization rates are greater than gap between current
host utilization (Cu) and host utilization threshold (Tu).

Furthermore, the host is evaluated for overloading and step continues until the host will become non-overloaded. It
continues until all the hosts are processed.

4) Step-16–17: All the migrated VMs are optimally packed/placed on active physical machines according to the constraint
11
9 OPT . After allocation of VMs flush the memory variable containing list of those VMs which are selected for

migration.
5) Step-18–22: Hosts are detected for undertilized host. Minimum utilized host among all hosts is declared underutilized

host and all VMs from this host are migrated to pack over other active hosts.

4 PERFORMANCE EVALUATION

In this section, we conduct performance evaluation of the proposed heuristic models using simulations along with
comparative study of benchmark algorithms. The metrics like energy consumption, host shutdowns, total VM migrations
are considered for the expalantion.

4.1 Simulation Setup
We targeted IaaS deployment model of cloud computing for our experimentations. An IaaS deployment model of Cloud
is supposed to create a view of infinite computing resources to the client side. It is tough to conduct experiments on large
scale real infrastructure repetitively for the proposed heuristics. Therefore, we find simulations as the best alternative for
performance evaluation. CloudSim is chosen as a testbed for performing simulations on proposed heuristics [47]. It is a Java
based advanced simulator where all the requirements for realization of cloud computing environment are already present.
For experimentation purpose, one has to make certain settings according to the necessity of the experiment. The simulation
parameters taken into consideration for our experimentations are given in Table 2. The underlying hardware architecture
used for experimental analysis is as follows: Intel(R) Core(TM) i7-3770 CPU @3.40 GHz (8 MB SmartCache) with 4 cores
having the capability to issue 8 hyper threads, 10 GB RAM DDR3 1330 with systems architecture of 64 bits, 1 TeraByte
secondary storage and Windows 10 Pro N operating system. We have considered simulation architecture as shown in
Fig. 6 with assembly of overloaded, normal loaded and underloaded hosts as container of virtual servers/machines that
are made available for execution of impending jobs arriving from dynamic workload traces.

xiii

TABLE 2: Simulation Parameters

Values/Type

Parameters NPA THR MAD IQR LR

1. Total Hosts 1200 1200 1200 1200 1200
2. Safety Parameter None None 1.5 2.5 1.2
3. Threshold None 0.8 1− s×MAD 1− s× IQR 1− s× LR

4. PE/Cloudlet 1 1 1 1 1
5. Scheduling Interval 300 300 300 300 300
6. Simulation Limit 24 Hours 24 ours 24 Hours 24 Hours 24 Hours

7. PlanetLab Workload 03/03/2011 03/03/2011 03/03/2011 03/03/2011 03/03/2011

Real
traces of
PlanetLab
server
workload
by Dates

06/03/2011 06/03/2011 06/03/2011 06/03/2011 06/03/2011
09/03/2011 09/03/2011 09/03/2011 09/03/2011 09/03/2011
22/03/2011 22/03/2011 22/03/2011 22/03/2011 22/03/2011
25/03/2011 25/03/2011 25/03/2011 25/03/2011 25/03/2011
03/04/2011 03/04/2011 03/04/2011 03/04/2011 03/04/2011
09/04/2011 09/04/2011 09/04/2011 09/04/2011 09/04/2011
11/04/2011 11/04/2011 11/04/2011 11/04/2011 11/04/2011
12/04/2011 12/04/2011 12/04/2011 12/04/2011 12/04/2011
20/04/2011 20/04/2011 20/04/2011 20/04/2011 20/04/2011

8. Random Workload 1052 1052 1052 1052 1052

Total VMs
Simulated
for
synthetic
workload

898 898 898 898 898
1061 1061 1061 1061 1061
1516 1516 1516 1516 1516
1078 1078 1078 1078 1078
1463 1463 1463 1463 1463
1358 1358 1358 1358 1358
1233 1233 1233 1233 1233
1054 1054 1054 1054 1054
1033 1033 1033 1033 1033

Virtual

Machine/

Server

Virtual

Machine/

Server

Virtual

Machine/

Server

Virtual

Machine/

Server

Virtual

Machine/

Server

Virtual

Machine/

Server

Virtual

Machine/

Server

Overloaded Host Normal Loaded Host Underloaded Host

Physical Server Physical Server Physical Server

Impending

Jobs

VM Migration VM Migration

Fig. 6: Simulation Architecture

We have simulated a data center with 1200 heterogeneous physical machines among which 600 of them are HP ProLiant
ML110 G4 servers, and rest of the 600 are HP ProLiant ML110 G5 servers. The characteristics of the servers and data on
their power consumption are given in Table 1. We take Amazon EC2 instance type [48] VMs having characteristics as
shown in Table 3. The VMs simulated are of single core type due to the reason that workload data taken from traces comes
from single core physical machines. At the initial stage, the VMs are allocated according to the resource requirements as
per the VM types. However, VMs suffer from resources underutilization during the simulations according to workload
provisioning and create opportunities for dynamic consolidation.

To evaluate the proposed methods we adopted simulation based validation that rely upon real workload traces from
real systems that are available publicly. We used data provided from CoMon project for monitoring infrastructure of
PlanetLab servers [20] that was included in CloudSim simulation toolkit for 10 random days (during March and April
2011). The workload traces contains data on CPU utilizations with interval of measurement of 5 minutes from more than a

xiv

TABLE 3: Characteristics of Amazon EC2 VM instances

Resource
Types

High-CPU
Medium Instance

(t1.medium)

Extra Large
Instance

(t1.xlarge)

Small
Instance

(t1.small)

Micro
Instance

(t1.micro)

MIPS 2500 2000 1000 500
RAM 0.85 GB 3.75 GB 1.7 GB 613 MB

thousand VMs hosted on more than 1000 server located at 645 places of the world [13]. The workload traces collected are
representative of IaaS type clouds similar to Amazon EC2 where independent users create and manage VMs of single-core.
As the utilization value of some VMs in the data set is so low, we filter the original data and only consider the range of
CPU and memory utilization between 5% to 90%. So we can evaluate the proposed VM consolidation by considering both
CPU and memory intensive tasks. Apart from this, we utilize synthetic workload data (provided by CloudSim class) to test
out the performance of proposed algorithms with dynamic and non-stationary random workloads. The random workload
generates cloudlets as a small task that takes simulation time as a seed value. In Table 4, P-i’s are PlanetLab workload
traces and R-i’s are synthetic random workload traces coming out of the similar number of VMs as in PlanetLab traces.

TABLE 4: PlanetLab Workload Data Traces

PlanetLab
Workload
Instance

Date Number of VMs Mean St. Dev. Quartile 1 (%) Median (%) Quartile 3 (%) Random
Workload
Instance

PL-1 03/03/2011 1052 12.31 17.09 2 6 15 R-1
PL-2 06/03/2011 898 11.44 16.83 2 5 13 R-2
PL-3 09/03/2011 1061 10.70 15.57 2 4 13 R-3
PL-4 22/03/2011 1516 9.26 12.78 2 5 12 R-4
PL-5 25/03/2011 1078 10.56 14.14 2 6 14 R-5
PL-6 03/04/2011 1463 12.39 16.55 2 6 17 R-6
PL-7 09/04/2011 1358 11.12 15.09 2 6 15 R-7
PL-8 11/04/2011 1233 11.56 15.07 2 6 16 R-8
PL-9 12/04/2011 1054 11.54 15.15 2 6 16 R-9
PL-10 20/04/2011 1033 10.43 15.21 2 4 12 R-10

4.2 Baseline Methods
We discuss the utility of employing a utilization prediction model by comparing proposed heuristics with baseline
heuristics proposed in [33] and [15]. Two types of methods are used for comparative evaluation of proposed models: (i) Host
overloading detection methods, and (ii) Host offloading methods. Host overloading methods consider two approaches,
namely static thresholds (THR) and dynamic thresholds. The first one assumes static values of host utilization thresholds
while later one calculate dynamic host utilization threshold values on runtime. Dynamic methods like Median Absolute
Deviation (MAD), Interquartile Range (IQR) and Local Regression (LR) for host overloading detection thresholds [15] that
are shown in general equation (16).

Tu =

{
1− s ·X if X ∈ {IQR,MAD,LR}
THR, otherwise.

(16)

Host offloading methods consider three benchmark methods namely, (i) Random Selection (RCS) policy that selects
a VM for migration according to uniformly distributed discrete random variable X d

= U((0, |Vj |)), whose values index
a set of VMs Vj allocated to a host j. (ii) Minimum Migration Time (MMT) policy that selects a VM v for migration
that takes minimum time to migrate a VM allocated the overloaded host. The migration time is calculated as the ratio of
amount of RAM utilized by the VM to the spare network bandwidth available for the host j as formalized as RAMu(v)

NETj
,

and (iii) Maximum Correlation (MC) selects a VM for migration from overloaded host having highest multiple correlation
coefficient that is squared coefficient of correlation between observed value y and predicted value ŷ for the random
variable Y on CPU utilization by that VM [15] [49] [50]. On considering n VMs to be hosted by the physical host, the
multiple correlation coefficient is calculated as shown in (17).

R2
Y,X1,X2,··· ,Xn−1

=

∑n
i=1(yi − µY)2(ŷi − µŶ)2∑n

i=1(yi − µY)2
∑n
i=1(ŷi − µŶ)2

(17)

where X1, X2, · · ·X(n−1) are the random variable on CPU utilizations by those (n−1) VMs that are not eligible to migrate
in accordance to the MC policy, yi and ŷ are observed and predicted values of dependent variable Y , µY and µŶ are the
sample means of Y and Ŷ , respectively.

xv

TA
BL

E
5:

En
er

gy
C

on
su

m
pt

io
n

M
et

ri
c

N
PA

D
V

FS
TH

R
M

A
D

IQ
R

LR

R
C

S
M

M
T

M
C

M
eM

T
SV

D
M

FT
R

C
S

M
M

T
M

C
M

eM
T

SV
D

M
FT

R
C

S
M

M
T

M
C

M
eM

T
SV

D
M

FT
R

C
S

M
M

T
M

C
M

eM
T

SV
D

M
FT

1(
a)

.
PL

20
11

03
03

36
16

.2
0

80
3.

91
18

4.
27

19
3.

58
18

3.
37

17
9.

02
16

5.
54

18
3.

87
17

5.
89

18
5.

32
17

5.
23

17
0.

62
15

7.
94

14
9.

96
18

0.
38

19
0.

16
18

0.
19

17
4.

63
16

1.
65

15
3.

40
15

1.
05

16
3.

06
15

0.
14

14
9.

27
14

0.
75

13
9.

63
(b

).
R

an
do

m
10

52
36

16
.2

0
10

51
.3

6
81

9.
90

84
0.

07
82

0.
34

79
7.

68
74

7.
96

74
7.

96
88

8.
06

90
5.

80
88

7.
49

86
0.

84
81

0.
14

81
1.

03
93

1.
81

94
7.

39
93

2.
89

17
4.

63
85

6.
24

85
4.

44
66

4.
77

68
9.

16
66

5.
36

65
9.

16
65

0.
60

65
0.

60
2(

a)
.

PL
20

11
03

06
36

16
.2

0
62

3.
77

13
9.

90
14

6.
11

13
8.

64
13

5.
48

12
4.

55
11

8.
48

13
3.

67
14

1.
65

13
3.

45
13

0.
13

11
8.

22
11

2.
77

13
6.

12
14

4.
00

13
6.

10
13

3.
40

12
1.

68
11

5.
30

11
5.

05
12

4.
87

11
4.

79
11

3.
65

10
7.

03
10

5.
49

(b
).

R
an

do
m

89
8

36
16

.2
0

89
9.

01
70

2.
55

71
7.

72
70

1.
24

68
0.

06
63

9.
29

63
9.

29
75

9.
22

77
6.

26
75

8.
97

73
5.

44
69

3.
54

69
2.

13
79

5.
66

81
2.

01
79

6.
07

13
3.

40
73

1.
43

73
2.

29
56

9.
01

58
9.

46
57

0.
00

56
4.

04
55

5.
47

55
5.

47
3(

a)
.

PL
20

11
03

09
36

16
.2

0
70

8.
68

15
9.

32
16

6.
92

15
7.

98
15

2.
86

14
0.

48
13

3.
40

15
6.

66
16

2.
84

15
3.

66
15

0.
60

13
5.

97
13

0.
59

15
9.

19
16

8.
17

15
7.

90
15

4.
55

14
0.

53
13

4.
22

13
0.

27
14

3.
42

13
0.

30
12

8.
88

11
8.

76
11

7.
47

(b
).

R
an

do
m

10
61

36
16

.2
0

10
61

.7
2

83
0.

03
84

8.
00

82
9.

63
80

4.
86

75
7.

65
75

7.
65

89
5.

25
91

4.
58

89
7.

29
86

8.
38

81
8.

64
81

8.
09

94
1.

05
95

7.
79

94
1.

12
15

4.
55

86
6.

15
86

4.
16

67
1.

27
69

4.
74

67
2.

26
66

7.
99

65
7.

53
65

7.
53

4(
a)

.
PL

20
11

03
22

36
16

.2
0

10
14

.2
1

19
4.

52
20

4.
13

19
5.

61
18

6.
77

17
1.

70
16

6.
33

18
9.

67
19

8.
11

18
8.

72
18

1.
55

16
6.

61
16

1.
07

19
4.

43
20

3.
25

19
3.

23
18

5.
43

17
0.

34
16

6.
26

16
2.

17
18

0.
32

16
3.

82
15

6.
59

14
7.

62
14

6.
35

(b
).

R
an

do
m

15
16

36
16

.2
0

15
13

.8
0

11
79

.4
7

12
08

.1
9

11
77

.9
4

11
48

.4
7

10
79

.8
3

10
79

.8
3

12
69

.9
3

12
85

.0
5

12
69

.5
2

12
33

.4
9

11
68

.5
7

11
66

.5
5

13
02

.5
7

13
03

.2
6

13
03

.3
1

18
5.

43
12

29
.9

0
12

28
.2

4
95

3.
67

99
1.

09
95

6.
45

94
7.

42
93

6.
29

93
6.

22
5(

a)
.

PL
20

11
03

25
36

16
.2

0
78

5.
49

16
9.

86
17

6.
31

16
7.

83
16

1.
59

14
9.

06
14

2.
69

16
3.

55
17

2.
39

16
2.

37
15

6.
70

14
3.

79
13

7.
13

16
6.

06
17

4.
81

16
6.

52
15

9.
73

14
7.

40
14

0.
71

13
9.

75
15

2.
79

13
9.

39
13

6.
92

12
8.

16
12

6.
00

(b
).

R
an

do
m

10
78

36
16

.2
0

10
77

.1
7

84
2.

35
86

1.
98

84
1.

15
81

9.
98

76
8.

67
76

8.
67

90
9.

12
92

9.
04

91
0.

03
88

0.
65

83
0.

16
83

1.
15

95
4.

63
97

5.
35

95
4.

77
15

9.
73

87
8.

79
87

8.
21

68
1.

13
70

6.
47

68
1.

77
67

6.
95

66
8.

17
66

8.
17

6(
a)

.
PL

20
11

04
03

36
16

.2
0

10
71

.9
0

25
1.

93
26

0.
90

24
9.

50
24

2.
10

22
3.

54
21

7.
11

24
1.

58
25

4.
33

24
0.

35
23

1.
86

21
4.

50
20

7.
60

24
7.

05
26

0.
08

24
6.

93
23

7.
52

22
0.

15
21

3.
68

20
6.

87
22

2.
65

20
6.

70
20

1.
96

19
3.

32
19

1.
60

(b
).

R
an

do
m

14
63

36
16

.2
0

14
60

.7
1

11
39

.4
4

11
66

.5
3

11
38

.3
7

11
08

.9
6

10
41

.6
2

10
41

.6
2

12
31

.5
1

12
52

.7
4

12
29

.7
2

11
93

.0
3

11
26

.6
3

11
28

.3
2

12
79

.1
4

12
84

.9
8

12
79

.4
0

23
7.

52
11

87
.6

3
11

88
.7

4
92

2.
58

95
6.

46
92

2.
82

91
6.

69
90

5.
10

90
5.

10
7(

a)
.

PL
20

11
04

09
36

16
.2

0
92

8.
59

20
1.

30
21

0.
53

19
8.

62
19

1.
87

17
7.

49
17

2.
53

19
3.

02
20

4.
69

19
1.

78
18

5.
57

17
1.

10
16

5.
99

19
7.

72
20

9.
82

19
6.

27
18

9.
89

17
6.

04
17

0.
66

16
5.

74
17

9.
80

16
5.

30
16

0.
99

15
2.

12
15

1.
38

(b
).

R
an

do
m

13
58

36
16

.2
0

13
56

.5
5

10
59

.9
0

10
82

.8
0

10
56

.3
5

10
28

.0
4

96
8.

96
96

8.
96

11
41

.1
4

11
67

.9
2

11
43

.8
6

11
08

.6
6

10
45

.5
1

10
45

.3
3

11
99

.4
8

12
19

.4
6

12
00

.6
9

18
9.

89
11

02
.3

0
11

02
.4

8
85

7.
44

88
7.

23
85

8.
38

85
0.

83
84

0.
15

84
0.

15
8(

a)
.

PL
20

11
04

11
36

16
.2

0
90

3.
08

19
7.

19
20

7.
06

19
5.

66
18

8.
97

17
4.

87
16

9.
81

19
0.

87
20

0.
52

18
9.

25
18

2.
32

16
8.

81
16

3.
50

19
4.

60
20

5.
76

19
4.

47
18

6.
86

17
4.

17
16

7.
68

15
9.

95
17

7.
84

16
2.

04
15

6.
43

14
9.

21
14

8.
46

(b
).

R
an

do
m

12
33

36
16

.2
0

12
34

.2
5

96
3.

17
98

5.
08

95
9.

42
93

5.
66

87
9.

81
87

9.
81

10
38

.8
0

10
62

.1
5

10
40

.5
7

10
09

.6
8

95
2.

26
95

2.
03

10
91

.7
1

11
12

.5
9

10
91

.1
5

18
6.

86
10

05
.1

9
10

03
.3

0
78

0.
11

80
6.

54
78

0.
11

77
3.

95
76

4.
06

76
4.

11
9(

a)
.

PL
20

11
04

12
36

16
.2

0
76

6.
75

17
1.

55
17

8.
33

16
9.

68
16

3.
68

15
2.

44
14

6.
46

16
5.

43
17

3.
72

16
5.

41
15

8.
86

14
6.

38
14

1.
92

16
9.

87
17

8.
32

16
9.

50
16

4.
18

15
0.

99
14

6.
77

14
0.

18
15

2.
91

14
0.

13
13

5.
72

12
9.

93
12

8.
10

(b
).

R
an

do
m

10
54

36
16

.2
0

10
54

.0
7

82
3.

02
84

2.
46

82
3.

00
80

1.
11

75
1.

08
75

1.
08

88
9.

22
90

9.
05

88
9.

55
86

0.
38

81
3.

38
81

2.
28

93
3.

38
95

2.
06

93
4.

00
16

4.
18

85
8.

23
85

7.
50

66
6.

50
68

9.
45

66
7.

46
66

2.
06

65
2.

94
65

2.
94

10
(a

).
PL

20
11

04
20

36
16

.2
0

10
14

.2
1

19
4.

52
20

4.
13

19
5.

61
18

6.
77

17
1.

70
16

6.
33

18
9.

67
19

8.
11

18
8.

72
18

1.
55

16
6.

61
16

1.
07

19
4.

43
20

3.
25

19
3.

23
18

5.
43

17
0.

34
16

6.
26

16
2.

17
18

0.
32

16
3.

82
15

6.
59

14
7.

62
14

6.
35

(b
).

R
an

do
m

10
33

36
16

.2
0

15
13

.8
0

11
79

.4
7

12
08

.1
9

11
77

.9
4

11
48

.4
7

10
79

.8
3

10
79

.8
3

12
69

.9
3

12
85

.0
5

12
69

.5
2

12
33

.4
9

11
68

.5
7

11
66

.5
5

13
02

.5
7

13
03

.2
6

13
03

.3
1

18
5.

43
12

29
.9

0
12

28
.2

4
95

3.
67

99
1.

09
95

6.
45

94
7.

42
93

6.
29

93
6.

22

TA
BL

E
6:

To
ta

lV
M

M
ig

ra
ti

on
s

N
PA

D
V

FS
TH

R
M

A
D

IQ
R

LR
R

C
S

M
M

T
M

C
M

eM
T

SV
D

M
FT

R
C

S
M

M
T

M
C

M
eM

T
SV

D
M

FT
R

C
S

M
M

T
M

C
M

eM
T

SV
D

M
FT

R
C

S
M

M
T

M
C

M
eM

T
SV

D
M

FT
1(

a)
.

PL
20

11
03

03
0

0
24

32
4

27
04

1
23

99
7

23
09

6
20

75
1

24
37

3
23

79
2

26
69

9
23

87
6

22
45

4
20

81
4

17
86

9
23

76
3

26
45

1
23

58
9

22
82

5
20

68
3

18
73

1
23

27
1

28
33

6
22

84
8

22
11

0
17

46
1

14
49

3
(b

).
R

an
do

m
10

52
0

0
83

94
2

93
11

1
83

52
8

76
45

2
63

46
8

63
46

8
92

59
6

10
11

62
92

27
3

84
94

6
71

84
8

71
88

2
98

68
6

10
67

82
98

46
6

22
82

5
77

26
6

77
23

5
63

06
4

82
07

2
63

43
9

57
93

7
47

12
5

47
12

5
2(

a)
.

PL
20

11
03

06
0

0
18

99
0

20
75

4
18

68
2

18
18

7
16

11
2

13
90

1
19

02
6

20
76

7
18

58
7

18
04

7
15

93
9

14
02

1
18

48
7

20
76

5
18

69
6

18
03

1
16

30
3

14
06

3
17

58
4

21
05

7
17

21
8

17
19

6
13

05
2

10
65

6
(b

).
R

an
do

m
89

8
0

0
71

97
3

79
58

0
71

66
8

65
33

1
54

35
0

54
35

0
79

18
3

86
78

5
79

04
2

72
38

2
61

86
9

61
75

1
84

44
9

91
68

4
84

39
4

18
03

1
66

27
6

66
56

8
53

90
4

69
56

9
54

70
9

49
27

0
39

88
4

39
88

4
3(

a)
.

PL
20

11
03

09
0

0
21

31
8

23
85

5
21

32
2

19
48

0
17

19
3

15
47

8
21

13
0

23
17

4
20

92
4

19
51

7
17

63
2

15
80

3
21

12
4

23
85

6
20

91
4

20
00

8
17

70
9

16
20

3
19

69
8

24
89

8
20

01
1

19
64

7
14

66
1

12
09

6
(b

).
R

an
do

m
10

61
0

0
84

84
4

93
70

4
84

57
9

77
22

6
64

09
9

64
09

9
92

99
1

10
21

11
93

24
3

85
45

0
72

41
7

72
61

3
99

73
5

10
79

45
99

31
9

20
00

8
78

10
7

78
15

5
63

37
4

81
39

2
64

67
5

59
67

3
47

44
3

47
44

3
4(

a)
.

PL
20

11
03

22
0

0
26

45
3

29
43

5
26

70
4

24
55

0
22

26
9

20
05

2
25

84
3

28
73

1
25

30
5

24
18

3
22

25
6

20
99

4
26

44
6

29
22

6
26

06
7

24
34

0
22

11
9

21
06

9
27

32
5

32
49

4
27

68
2

25
80

2
20

25
2

18
24

9
(b

).
R

an
do

m
15

16
0

0
12

01
77

13
34

32
11

96
67

10
96

24
91

04
0

91
04

0
13

23
30

14
62

27
13

24
93

12
07

18
10

20
34

10
17

31
14

34
81

15
71

74
14

29
06

24
34

0
10

95
82

10
95

93
89

03
5

11
90

23
91

97
2

83
65

2
67

93
1

67
58

6
5(

a)
.

PL
20

11
03

25
0

0
22

75
5

25
09

3
22

86
0

21
10

7
18

92
1

17
37

6
21

82
3

24
75

8
21

79
5

20
81

2
18

58
7

17
33

6
22

01
9

24
80

2
22

42
8

20
37

7
19

05
0

17
49

6
21

90
4

26
36

9
21

82
6

21
65

6
17

37
0

13
80

3
(b

).
R

an
do

m
10

78
0

0
85

97
7

95
57

9
86

01
4

78
68

6
65

22
5

65
22

5
94

53
8

10
37

97
94

91
0

86
52

5
73

69
1

73
82

7
10

11
95

11
01

56
10

05
83

20
37

7
79

04
3

79
45

9
64

40
5

83
64

6
64

55
8

59
78

7
48

23
4

48
23

4
6(

a)
.

PL
20

11
04

03
0

0
32

80
8

35
73

2
32

35
4

30
79

2
27

25
8

24
63

4
32

07
8

35
52

4
31

57
6

29
46

5
27

04
5

24
38

5
31

74
4

35
54

2
31

83
4

29
59

4
26

83
3

25
46

2
32

95
1

38
46

5
32

89
4

30
94

0
24

94
5

21
31

5
(b

).
R

an
do

m
14

63
0

0
11

61
03

12
87

94
11

57
49

10
55

72
87

60
3

87
60

3
12

84
55

14
03

60
12

76
94

11
64

46
98

86
5

98
92

2
13

65
41

14
86

58
13

60
13

29
59

4
10

64
96

10
65

52
86

82
5

11
32

92
88

03
4

81
47

5
65

54
2

65
54

2
7(

a)
.

PL
20

11
04

09
0

0
26

94
0

29
80

6
26

31
4

24
91

4
22

41
5

20
58

4
25

68
2

29
14

0
25

54
6

24
46

0
21

98
9

20
26

8
25

94
0

29
34

9
25

38
6

23
94

6
22

71
3

21
07

5
26

90
6

31
55

6
27

28
2

24
53

6
20

18
7

17
18

7
(b

).
R

an
do

m
13

58
0

0
10

82
97

11
96

46
10

76
07

98
13

1
81

51
8

81
51

8
11

85
50

13
05

08
11

86
11

10
86

55
91

78
5

91
90

5
12

66
57

13
74

84
12

63
84

23
94

6
98

76
8

98
66

0
81

49
6

10
43

06
82

08
9

74
61

3
61

11
8

61
11

8
8(

a)
.

PL
20

11
04

11
0

0
26

37
4

28
95

9
25

79
3

24
41

3
22

17
4

20
40

6
25

29
4

28
33

5
25

19
7

23
96

7
22

02
5

20
37

4
25

74
1

28
82

4
25

41
2

24
20

0
22

20
7

21
13

7
26

54
1

31
04

7
26

58
7

24
76

1
20

49
3

17
78

0
(b

).
R

an
do

m
12

33
0

0
98

28
4

10
87

73
97

74
8

89
46

7
74

40
4

74
40

4
10

82
24

11
84

86
10

81
67

98
94

9
83

73
6

83
75

0
11

54
12

12
50

56
11

48
42

24
20

0
90

21
7

90
18

7
73

89
8

94
19

2
74

04
2

68
88

4
54

87
4

55
02

4
9(

a)
.

PL
20

11
04

12
0

0
22

76
1

25
10

1
22

76
0

21
40

6
18

90
4

17
70

6
22

00
3

24
24

1
21

63
4

20
41

7
19

21
4

17
99

2
22

40
8

24
88

1
22

09
3

21
18

6
19

22
7

18
60

4
22

02
1

26
48

2
22

70
2

20
64

4
16

91
1

14
36

3
(b

).
R

an
do

m
10

54
0

0
84

11
0

93
09

1
83

93
3

76
86

7
63

86
2

63
86

2
92

66
8

10
14

17
92

51
7

84
67

5
72

11
1

72
10

8
98

92
4

10
71

64
98

47
3

21
18

6
77

80
9

77
30

4
63

40
4

80
38

2
63

74
2

58
25

7
47

33
5

47
33

5
10

(a
).

PL
20

11
04

20
0

0
26

45
3

29
43

5
26

70
4

24
55

0
22

26
9

20
05

2
25

84
3

28
73

1
25

30
5

24
18

3
22

25
6

20
99

4
26

44
6

29
22

6
26

06
7

24
34

0
22

11
9

21
06

9
27

32
5

32
49

4
27

68
2

25
80

2
20

25
2

18
24

9
(b

).
R

an
do

m
10

33
0

0
12

01
77

13
34

32
11

96
67

10
96

24
91

04
0

91
04

0
13

23
30

14
62

27
13

24
93

12
07

18
10

20
34

10
17

31
14

34
81

15
71

74
14

29
06

24
34

0
10

95
82

10
95

93
89

03
5

11
90

23
91

97
2

83
65

2
67

93
1

67
58

6

xvi

4.3 Performance Evaluation Metrics
The main goals of the proposed work includes: (i) to reduce the energy consumption by servers deployed in cloud
data center; (ii) to minimize the excessive number of shutdowns of physical servers (cycle of host deactivation and
reactivation); and (iii) to minimize the VM migrations. We evaluate the performance of the proposed models consider
following performance metrics.
• Energy Consumption: Energy consumption of a physical machine has two components, namely, (i) Static component

(Esleep = Psleept + Etransition) when hosts is in sleep/standby mode that includes the period he transition period
when the host moves from sleep state to wake-up mode, and (ii) Dynamic component (Enosleep = P0t + (cV 2f)t)
when host is in active mode that includes the period when the host is either performing computation or host is in idle
mode. Meanwhile, energy consumption is also written as a function of host utilization as shown in (18).

E(t) =

∫ T

t=0
P (u(t))dt (18)

Esleep and Psleep are the energy and power consumption when host is in sleep mode, Enosleep and Pnosleep are energy
and power consumption when host is in active mode, Etransition is the energy consumption when host trigger from
sleep state to idle/active state, P0 is idle power consumption, c is constant, V is the voltage and f is CPU frequency,
and t is time.

• Total Host Shutdowns: Excessive host shutdowns (frequent cycle of host deactivation and reactivation) causes extra
penalty for invoking the servers back due to sudden upsurge in demand and leads to non-fulfillment of SLAs due
to delay in fulfilling resource demanded by application services. The proposed approaches turn off the hosts that are
found to be underutilized or ideal to cut down the energy consumption. However, excessive shutdowns cause extra
efforts and delay to revoke them when need arises.

• VM Migration: Live migration of VMs is a costly operation that causes involvement of (i) some amount of CPU
processing in the part of source server, (ii) the usage of bandwidth link between the source and destination servers,
(iii) the downtime of the application services executing over migrating VM and (iv) total migration time of the VM
[51]. In addition, VM migration consumes negligible energy that is considered for measuring SLA violations as 10% of
CPU utilization during all VM migrations in the servers.

• SLA Violations: SLA violations (SLAV) metric was proposed in [15] to measure the SLAs delivered to VMs in IaaS
clouds. SLAV is a composite metric that capture the SLA violations due to over utilization (SLAVO) and SLA violation
due the VM migrations (SLAVM) together. Measurement of SLAV, SLAVO, and SLAVM are performed using equations
shown in (19), (20) and (21).

SLAV = SLAV O × SLAVM (19)

SLAV O = α
Tv
Ta

=
1

M

M∑
i=1

Tsi
Tai

(20)

SLAVM = β
Cv
Ca

=
1

N

N∑
j=1

Cdj
Crj

(21)

where α and β are the scaling constant, M is the total number of physical hosts, N is the total number of VMs, Tai
is the total time during which host i experienced CPU utilizations 100% leading to SLA violations. Tai is the total
time during which host i remained active, Cdj is estimate of performance degradation for VM j and Cr,j is total CPU
capacity requested by VM j during VMs lifetime.

• ESV: It is a composite metric ESV (t) proposed in [33] that attempts to capture the effect of energy consumption and
SLAV at once as shown in (22).

ESV = E(t)× SLAV (22)

4.4 Analysis of Results
We evaluate proposed methods on considered simulation framework considering ten workload traces of PlanetLab Servers
and ten synthetic random workload traces. We get the results of Energy consumption metric and Total VM migrations
metric as shown in Table 5 and Table 6. Similarly, we have collected the results of rest of the performance metrics and plot
the results of performance metrics in Fig. 7–13.

On simulating benchmark algorithms and proposed heuristic algorithms, we have found that proposed approaches
outperforms over the benchmark methods on energy consumption metric for both of the workload traces as indicated in
results of Table 5 and Fig. 7(a)–7(b). The efficiency of the algorithm is attributed to efficient packing of VMs on servers that
utilize the server resources for long span of time and improve resource utilizations which do not generates unnecessary
VM migrations.

xvii

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2
100

120

140

160

180

200

220

240

260
E

ne
rg

y
C

on
su

m
pt

io
n

(k
W

h)

Box Plot for Energy Consumption Metric

(a) PlanetLab Workload

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

200

400

600

800

1000

1200

E
ne

rg
y

C
on

su
m

pt
io

n
(k

W
h)

Box Plot for Energy Consumption Metric

(b) Random Workload

Fig. 7: Energy consumption metric on workload traces of Planetlab servers and random synthetic workload

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

1

1.5

2

2.5

3

3.5

T
ot

al
 V

M
 M

ig
ra

tio
ns

×104 Box Plot for Total VM Migrations

(a) PlanetLab Workload

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

2

4

6

8

10

12

14

16

T
ot

al
 V

M
 M

ig
ra

tio
ns

×104 Box Plot for Total VM Migrations

(b) Random Workload

Fig. 8: Total VM migrations metric on workload traces of Planetlab servers and random synthetic workload

Total VM migrations is an important parameter for real environment of cloud computing technology which involves a
huge bandwidth cost for live migrations of VMs. Results of Table 6 and Fig. 8(a)–8(b) show that proposed algorithms report
low VM migrations in comparison to benchmark algorithms on both of the PlantLab and random workloads. However,
MeMT reports lowest VM migration rate with IQR threshold on employing random workload. Meanwhile, MeMT with
combination of IQR performs extraordinarily over all possible combinations on employing random traces of synthetic
workload due to detection of hotspots (overloaded hosts) easily. For rest of the cases, MFT model with LR overloading
detection method reports lowest value of total VM migration metric. The success of the proposed models is attributed to
controlled VM migration through VM selection methods with identified safety parameter for the overloading detection
method.

Results of Fig. 9(a)–9(b) show that the proposed models are not only able to reduce the energy consumption and total
VM migrations but also reduce the total host shutdowns. The reason of lower host shutdowns is attributed to efficient
packing of VMs on fewer hosts that do not violate the utilization thresholds of the servers and may not require further VM
migration until the applications hosted in VMs finish their jobs. MeMT reports lowest host shutdowns along with lowest
energy consumption due to ability of spotting of hotspots associated with MeMT as shown in Fig. 9(a)–9(b). Similarly,
we collected the results on SLA violations, SLAVO, SLAVM and ESV metric whose results are plotted in Fig. 10(a)–10(b),
Fig 11(a)–11(b), Fig. 12(a)–12(b), and Fig. 13(a)–13(b). The proposed methods, namely, MeMT, SVD and MFT yields best
results with combinations of static and dynamic thresholds in terms of energy consumption, total host shutdowns and the
total VM migrations due to efficient VM packing under the constraint of 11

9 OPT + 1 VMs over a host [28] in comparison

xviii

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000
T

ot
al

 H
os

t S
hu

td
ow

ns
Box Plot for Total Host Shutdowns

(a) PlanetLab Workload

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

0.5

1

1.5

2

2.5

3

3.5

4

T
ot

al
 H

os
t S

hu
td

ow
ns

×104 Box Plot for Total Host Shutdowns

(b) Random Workload

Fig. 9: Total host shutdowns metric on workload traces of Planetlab servers and random synthetic workload

to existing VM selection models viz. RCS, MMT and MC due to associated server runtime with relatively high workload
due to inefficient packing.

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S
LA

V

Box Plot for SLAV Metric

(a) PlanetLab Workload

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2
0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
LA

V

Box Plot for SLAV Metric

(b) Random Workload

Fig. 10: SLA violations metric on workload traces of Planetlab servers and random synthetic workload

Apart from the results discussed above, results of SLAV, SLAVO and SLAVM do not give any clue about the fitness of
any algorithm due to variations existing in the results as can be seen in Fig. 10(a)–10(b), Fig. 11(a)–11(b) and Fig. 12(a)–
12(b). However, the results obtained for proposed algorithms are not kind of outlier in comparison to the benchmark
algorithms and therefore confirms their suitability. Meanwhile, ESV (t) is not weighted metric and it is difficult to decide
over efficiency of any algorithm by looking at value of ESV (t) only. Considering example of Non Power Aware (NPA)
and Dynamic Voltage and Frequency Scaling (DVFS) based application deployment environment, both of them do not
generate any SLA violations due to no VM migrations (Fig. 8(a)–8(b)), hence results into minimum values of ESV that is
zero. However, both of them are not the efficient way to deploy applications in Cloud environment, therefore, we do not
set ESV as the primary criteria to decide over goodness of algorithm.

4.5 Test of Significance
Using workload described in Section 4.1, we simulated all combinations of four overloading detection methods (THR,
MAD, IQR and LR) with six server offloading methods (RCS, MMT, MC, MeMT, SVD, and MFT). Moreover, we have
taken safety parameter to be 0.8, 2.5, 1.5 and 1.2 for THR, MAD, IQR and LR, respectively to control aggressiveness of the
methods for consolidating VMs. To perform the test of significance on proposed methods we select Kolmogorov-Smirnov

xix

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

5

5.5

6

6.5

7

7.5

8
S

LA
T

A
H

Box Plot for SLATAH Metric

(a) PlanetLab Workload

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

8

10

12

14

16

18

20

22

S
LA

T
A

H

Box Plot for SLATAH Metric

(b) Random Workload

Fig. 11: SLAVO metric on workload traces of PlanetLab servers and random synthetic workload

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
D

M

Box Plot for PDM Metric

(a) PlanetLab Workload

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

P
D

M

Box Plot for PDM Metric

(b) Random Workload

Fig. 12: SLAVM metric on workload traces of PlanetLab servers and random synthetic workload

test and Shapiro-Wilk test [52] [53]. Both of the test yields p− value > 0.05 for all the proposed combination and pass the
test of normality validating that results are statistically significantly different. The proposed algorithms not only reduce the
energy consumption but also obtains low VM migrations and host shutdowns.

xx

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

60

80

100

120

140

160

180

200

220
E

S
V

Box Plot for ESV Metric

(a) PlanetLab Workload

Thr
Rcs

-0
.8

Thr
M

m
t-0

.8

Thr
M

c-
0.

8

Thr
M

eM
t-0

.8

Thr
Svd

-0
.8

Thr
M

ft-
0.

8

M
ad

Rcs
-2

.5

M
ad

M
m

t-2
.5

M
ad

M
c-

2.
5

M
ad

M
eM

t-2
.5

M
ad

Svd
-2

.5

M
ad

M
ft-

2.
5

Iq
rR

cs
-1

.5

Iq
rM

m
t-1

.5

Iq
rM

c-
1.

5

Iq
rM

eM
t-1

.5

Iq
rS

vd
-1

.5

Iq
rM

ft-
1.

5

Lr
Rcs

-1
.2

Lr
M

m
t-1

.2

Lr
M

c-
1.

2

Lr
M

eM
t-1

.2

Lr
Svd

-1
.2

Lr
M

ft-
1.

2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

E
S

V

Box Plot for ESV Metric

(b) Random Workload

Fig. 13: ESV metric on workload traces of PlanetLab servers and random synthetic workload

5 CONCLUSION AND FUTURE WORK

Resource under-utilization is the major root cause of higher energy consumption in cloud computing infrastructure and
it is necessary to improve resource utilization to cut down the energy consumption. In this paper, we proposed Median
Migration Time (MeMT), Smallest Void Detection (SVD) and Maximum Fill Technique (MFT) algorithms for efficient
consolidation of VMs on relatively small number of physical hosts. We tested proposed algorithm with Static Threshold
(THR), Median Absolute Deviations (MAD), Interquartile Range (IQR) and Local Regression (LR) based overloading
detection methods. The proposed algorithms outperforms on energy consumption, total host shutdowns and total VM
migrations metrics with all combinations of overloading detection methods. Additionally, we perform statistical test of
significance on proposed algorithms. The algorithms pass the test of normality and confirms that results are statistically
significantly different.

In future authors we intend to identify more real datasets to test out the behaviour of proposed methods. We also
intend to propose VM cost/price models which is also an important and exciting issue for the cost optimization in the
part of end-user and cloud provider [54]. Furthermore, we plan to investigate the performance of proposed methods over
OpenStack Neat and CloudStack like environments as a future direction of research [55, 56].

REFERENCES

[1] G. Cook and J. Van Horn, “How dirty is your data? a look at the energy choices that power cloud computing,” Greenpeace (April 2011), 2011.
[2] J. Varia, “Best practices in architecting cloud applications in the aws cloud,” Cloud Computing: Principles and Paradigms, pp. 457–490, 2011.
[3] E. Hossain and M. Hasan, “5G cellular: key enabling technologies and research challenges,” IEEE Instrumentation & Measurement Magazine,

vol. 18, no. 3, pp. 11–21, 2015.
[4] C. Liang, F. R. Yu, and X. Zhang, “Information-centric network function virtualization over 5G mobile wireless networks,” IEEE network,

vol. 29, no. 3, pp. 68–74, 2015.
[5] S. Khan and J. L. Mauri, Green Networking and communications: ICT for sustainability. CRC press, 2013.
[6] X. Wang, C. Xu, G. Zhao, and S. Yu, “Tuna: an efficient and practical scheme for wireless access point in 5G networks virtualization,” IEEE

Communications Letters, 2017.
[7] Z. Feng, C. Qiu, Z. Feng, Z. Wei, W. Li, and P. Zhang, “An effective approach to 5G: Wireless network virtualization,” IEEE Communications

Magazine, vol. 53, no. 12, pp. 53–59, 2015.
[8] I. Farris, T. Taleb, H. Flinck, and A. Iera, “Providing ultra-short latency to user-centric 5G applications at the mobile network edge,”

Transactions on Emerging Telecommunications Technologies, 2017.
[9] C. A. Garcı́a-Pérez and P. Merino, “Experimental evaluation of fog computing techniques to reduce latency in LTE networks,” Transactions on

Emerging Telecommunications Technologies, 2017.
[10] A. S. Sadiq, T. Z. Almohammad, R. A. B. M. Khadri, A. A. Ahmed, and J. Lloret, “An energy-efficient cross-layer approach for cloud wireless

green communications,” in Fog and Mobile Edge Computing (FMEC), 2017 Second International Conference on. IEEE, 2017, pp. 230–234.
[11] A. T. Al-Hammouri, Z. Al-Ali, and B. Al-Duwairi, “ReCAP: A distributed captcha service at the edge of the network to handle server

overload,” Transactions on Emerging Telecommunications Technologies.
[12] J. Shuja, A. Gani, K. Ko, K. So, S. Mustafa, S. A. Madani, and M. K. Khan, “SIMDOM: A framework for simd instruction translation and

offloading in heterogeneous mobile architectures,” Transactions on Emerging Telecommunications Technologies, 2017.
[13] P. Arroba, J. M. Moya, J. L. Ayala, and R. Buyya, “Dynamic voltage and frequency scaling-aware dynamic consolidation of virtual machines

for energy efficient cloud data centers,” Concurrency and Computation: Practice and Experience, vol. 29, no. 10, 2017.
[14] S. Andrade-Morelli, E. Ruiz-Sánchez, S. Sendra, and J. Lloret, “Router power consumption analysis: towards green communications,” in

International Conference on Green Communications and Networking. Springer, 2012, pp. 28–37.
[15] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic

consolidation of virtual machines in cloud data centers,” Concurrency and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–1420,
2012.

xxi

[16] K.-D. Lange, “Identifying shades of green: The specpower benchmarks,” Computer, vol. 42, no. 3, pp. 95–97, 2009.
[17] D. P. Doane and L. E. Seward, “Applied statistics in business and economics,” USA: Irwin, 2005.
[18] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual machines consolidation in cloud data centers using reinforcement

learning,” in Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro International Conference on. IEEE, 2014, pp. 500–507.
[19] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, N. T. Hieu, and H. Tenhunen, “Energy-aware vm consolidation in cloud data centers

using utilization prediction model,” IEEE Transactions on Cloud Computing, 2016.
[20] K. Park and V. S. Pai, “CoMon: a mostly-scalable monitoring system for planetlab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1,

pp. 65–74, 2006.
[21] “Traces of Google workloads: Migrated from Google code repository,” https://github.com/google/cluster-data, (Accessed on 06/16/2017).
[22] E. Arianyan, H. Taheri, and V. Khoshdel, “Novel fuzzy multi objective dvfs-aware consolidation heuristics for energy and sla efficient

resource management in cloud data centers,” Journal of Network and Computer Applications, vol. 78, pp. 43–61, 2017.
[23] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres, and H. Tenhunen, “Using ant colony system to consolidate vms for

green cloud computing,” IEEE Transactions on Services Computing, vol. 8, no. 2, pp. 187–198, 2015.
[24] R. Nathuji and K. Schwan, “VirtualPower: coordinated power management in virtualized enterprise systems,” in ACM SIGOPS Operating

Systems Review, vol. 41, no. 6. ACM, 2007, pp. 265–278.
[25] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang, “Power and performance management of virtualized computing

environments via lookahead control,” Cluster computing, vol. 12, no. 1, pp. 1–15, 2009.
[26] H. C. Andrew, “Forecasting, structural time series models and the kalman filter,” Cambridge University, 1989.
[27] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and migration cost aware application placement in virtualized systems,” in

ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing. Springer, 2008, pp. 243–264.
[28] N. Karmarkar and R. M. Karp, “An efficient approximation scheme for the one-dimensional bin-packing problem,” in Foundations of Computer

Science, 1982. SFCS’08. 23rd Annual Symposium on. IEEE, 1982, pp. 312–320.
[29] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Resource pool management: Reactive versus proactive or lets be friends,” Computer

Networks, vol. 53, no. 17, pp. 2905–2922, 2009.
[30] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual machines in cloud data centers,” in Cluster, Cloud and Grid Computing

(CCGrid), 2010 10th IEEE/ACM International Conference on. IEEE, 2010, pp. 577–578.
[31] J. K. Verma, C. P. Katti, and P. C. Saxena, “MADLVF: An energy efficient resource utilization approach for cloud computing,” International

Journal of Information Technology and Computer Science, vol. 6, no. 7, pp. 56–64, 2014.
[32] G. Orsini, D. Bade, and W. Lamersdorf, “Cloudaware: Empowering context-aware self-adaptation for mobile applications,” Transactions on

Emerging Telecommunications Technologies.
[33] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient management of data centers for cloud

computing,” Future generation computer systems, vol. 28, no. 5, pp. 755–768, 2012.
[34] J. V. Kistowski and S. Kounev, “Univariate Interpolation-based Modeling of Power and Performance,” in Proceedings of the 9th EAI International

Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS 2015), December 2015.
[35] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield, “Live migration of virtual machines,” in Proceedings

of the 2nd conference on Symposium on Networked Systems Design & Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.
[36] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual machine based on full system trace and replay,” in Proceedings of the 18th

ACM international symposium on High performance distributed computing. ACM, 2009, pp. 101–110.
[37] M. Nelson, B.-H. Lim, G. Hutchins et al., “Fast transparent migration for virtual machines.” in USENIX Annual technical conference, general

track, 2005, pp. 391–394.
[38] A. Lesovsky, Getting Started with OVirt 3.3. Packt Publishing Ltd, 2013.
[39] T. Wood, P. J. Shenoy, A. Venkataramani, M. S. Yousif et al., “Black-box and gray-box strategies for virtual machine migration.” in NSDI,

vol. 7, 2007, pp. 17–17.
[40] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive fault tolerance for hpc with xen virtualization,” in Proceedings of the

21st annual international conference on Supercomputing. ACM, 2007, pp. 23–32.
[41] A. Kangarlou, D. Xu, P. Ruth, and P. Eugster, “Taking snapshots of virtual networked environments,” in Virtualization Technology in Distributed

Computing (VTDC), 2007 Second International Workshop on. IEEE, 2007, pp. 1–8.
[42] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution and leasing using virtual machines,” in Proceedings of the 17th international

symposium on High performance distributed computing. ACM, 2008, pp. 87–96.
[43] J. Jiang, Y. Feng, J. Zhao, and K. Li, “DataABC: A fast abc based energy-efficient live vm consolidation policy with data-intensive energy

evaluation model,” Future Generation Computer Systems, 2016.
[44] S. Power and P. B. Methodolody, “V2. 1,” Standard Performance and Evaluation Corporation (SPEC), 2011.
[45] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q. Dang, and K. Pentikousis, “Energy-efficient cloud computing,” The

computer journal, vol. 53, no. 7, pp. 1045–1051, 2010.
[46] S. Esfandiarpoor, A. Pahlavan, and M. Goudarzi, “Structure-aware online virtual machine consolidation for datacenter energy improvement

in cloud computing,” Computers & Electrical Engineering, vol. 42, pp. 74–89, 2015.
[47] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.
[48] “Amazon EC2 Instance Types: Amazon Web Services (AWS),” https://aws.amazon.com/ec2/instance-types/, (Accessed on 12/23/2017).
[49] H. Abdi, “Multiple correlation coefficient,” The University of Texas at Dallas, 2007.
[50] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server workload analysis for power minimization using consolidation,” in

Proceedings of the 2009 conference on USENIX Annual technical conference. USENIX Association, 2009, pp. 28–28.
[51] A. Murtazaev and S. Oh, “Sercon: Server consolidation algorithm using live migration of virtual machines for green computing,” IETE

Technical Review, vol. 28, no. 3, pp. 212–231, 2011.
[52] H. W. Lilliefors, “On the kolmogorov-smirnov test for normality with mean and variance unknown,” Journal of the American statistical

Association, vol. 62, no. 318, pp. 399–402, 1967.
[53] S. S. Shapiro and R. Francia, “An approximate analysis of variance test for normality,” Journal of the American Statistical Association, vol. 67,

no. 337, pp. 215–216, 1972.
[54] J. K. Verma and C. P. Katti, “Study of cloud computing and its issues: A review.” Smart Computing Review, vol. 4, no. 5, pp. 389–411, 2014.
[55] “OpenStack Neat: Dynamic consolidation of virtual machines in openstack clouds,” http://openstack-neat.org/, (Accessed on 12/22/2017).
[56] “Apache cloudstack: Open source cloud computing,” https://cloudstack.apache.org/, (Accessed on 12/22/2017).

https://github.com/google/cluster-data
https://aws.amazon.com/ec2/instance-types/
http://openstack-neat.org/
https://cloudstack.apache.org/

	Introduction
	Related Work
	Energy Aware VM Consolidation
	Problem Specification
	Power Model
	Live Migration of VMs
	Proposed Energy Aware Algorithms
	Median Migration Time
	Smallest Void Detection Technique
	Maximum Fill Technique

	Performance Evaluation
	Simulation Setup
	Baseline Methods
	Performance Evaluation Metrics
	Analysis of Results
	Test of Significance

	Conclusion and Future Work
	References

