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Abstract: Object detection is a fundamental computer vision task for many real-world applications.
In the maritime environment, this task is challenging due to varying light, view distances,
weather conditions, and sea waves. In addition, light reflection, camera motion and illumination
changes may cause to false detections. To address this challenge, we present three fusion architectures
to fuse two imaging modalities: visible and infrared. These architectures can provide complementary
information from two modalities in different levels: pixel-level, feature-level, and decision-level.
They employed deep learning for performing fusion and detection. We investigate the performance
of the proposed architectures conducting a real marine image dataset, which is captured by color
and infrared cameras on-board a vessel in the Finnish archipelago. The cameras are employed for
developing autonomous ships, and collect data in a range of operation and climatic conditions.
Experiments show that feature-level fusion architecture outperforms the state-of-the-art other fusion
level architectures.

Keywords: multi-sensor fusion; object detection; deep learning; convolutional neural networks;
autonomous vehicles; marine environment

1. Introduction

Object detection is a crucial problem for autonomous vehicles and has been studied for years to
make it efficient and faster. A reliable autonomous driving system relies on accurate object detection
for providing robust perception of the environment. In addition, the performance of subsequent
tasks such as object classification and tracking depend strongly on the object detection. In marine
environment, object detection is a challenging problem due to varying light, view distances, weather
conditions, and dynamic sea nature. In addition, light reflection, camera motion and illumination
changes may cause false detections [1].

Multi-sensor fusion technology is a promising solution for achieving accurate object detection by
obtaining the complementary properties of objects based on multiple sensors. The multi-sensor fusion
architectures are generally classified into three groups that are based on the level of data abstraction
used for fusion [2]. (1) Early fusion, also called pixel-level fusion, combines raw data from the sensors
before applying any information extraction strategies. (2) Middle fusion, also called feature-level
fusion, fuses the extracted features from each raw sensor data and then performs detection on the
fused data. (3) Late fusion, also called decision-level fusion, independently performs detection from
each sensor and the outputs of each sensor are fused at the decision level for final detection.

Among the combination of sensor types, InfRared (IR) and visible (RGB) image fusion is superior
in many aspects [3]. Firstly, image sensors are cheap when compared in other sensors, such as
radar and LiDAR (Light Detection And Ranging). Secondly, collecting and annotating image data is
much easier than LiDAR point clouds. Thirdly, IR and RGB images share complementary properties,
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thus producing robust and informative fused images. Finally, RGB images typically have high spatial
resolution and considerable detail when compared to the images that obtained from other sensors.
However, these images can be easily influenced by severe conditions, such as poor illumination, fog,
and other effects of bad weather. Meanwhile, the thermal IR cameras capture relative temperature,
which allows for distinguishing warm objects, like person from cold objects, like navigation buoy or
the island. Moreover, IR cameras can improve navigation safety at night/day time and all-weather
conditions by determining interest objects based on radiation difference [1–3].

Convolutional Neural Networks (CNNs) or ConvNet allowed for a significant improvement
in the performance of computer vision tasks, such as object classification [4], detection [5,6],
and segmentation [7]. Moreover, various fusion approaches have been employed CNN in autonomous
vehicles [1,8,9]. While the majority of these approaches has focused on RGB images, some of them
have also been directed using infrared images for object detection. We use CNN for addressing the
object detection problem in marine environment to fill this gap and by the fact that CNN is a very
powerful model for computer vision tasks.

In this work, we present three early, middle and late fusion CNN architectures to carry out
vessel detection in marine environment. These architectures can fuse the images from the visible and
thermal infrared cameras at the different levels of data abstraction. In addition, these architectures
employed a deep CNN as a detector to generate bounding box proposals for interest vessels in
marine environment. We did not take into consideration any semantic segmentation algorithms in
this study. The CNN is trained on data from a single sensor or two used sensors according to the
proposed fusion strategies. On the other hand, we investigate the training of uni-modal architectures
as well as multi-modal architectures. We also evaluated the proposed fusion architectures on a real
marine dataset that was collected by a vessel in the Finnish archipelago. The data represents images
which are captured by RGB and IR cameras in different marine environmental conditions (i.e., weather
conditions, light conditions, daytime/nighttime). To the best of our knowledge, no work has been done
on studying the effectiveness of three different levels of fusion in marine environment. To summarize,
the main contributions of this paper are in three-fold:

• We collect two carefully annotated maritime datasests in diverse environmental conditions and
dynamic ranges.

• We present three multi-modal CNN-based architectures to fuse RGB and IR images for achieving
robust vessel detection in marine environments.

• We investigate the effect of three deep learning-based and four traditional image fusion methods
in the proposed middle fusion architecture.

• We evaluate the performance of the proposed architectures. The effectiveness of the fusing of two
modalities against one modality is investigated.

The remainder of the work is organized, as follows. Section 2 discusses some of the most
important related works. The proposed architectures are presented in Sections 3–5. Sections 6 and 7
show the experimental setup and results of our implementations, respectively. Finally, we present our
conclusions in Section 8.

2. Related Work

In this section, we briefly review the related work on infrared and visible image fusion and object
detection using CNN. In addition, the vessel detection for maritime is also discussed.

CNNs for fusion: many image fusion techniques have been developed in recent years. The main
idea of these techniques is obtaining salient features from input images and then combining them for
generating a fused image [10]. Deep Learning (DL) is one of the widely-used approaches that has
recently been used by theses techniques, since it can explore the features from the data efficiently [8].
It is able to obtain features from input images and then reconstruct a fused images with more details.

Multi-Scale CNN (MS-CNN) is one of these techniques that uses DL for performing pixel-level
image fusion. It uses a proposal sub-network to perform target detection at multiple output layers,
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so that receptive fields match objects of different scales. These complementary scale-specific detectors
are combined in order to create a strong multi-scale object detector. In [9], a middle fusion approach is
proposed for fusing LiDAR and RGB data in order to classify objects in autonomous vehicle application.
This approach first converts LiDAR point cloud data into depth map and then fed the data to a CNN
for object classification. In a similar work [11], the dense depth map from LiDAR data and color
imagery are fused for pedestrian detection while using CNN. Their results show that fusing LiDAR
can improve the detection results. In another work, a DL-based fusion method [10] is presented to
generate a fused image containing whole features from two sources IR and RGB images. We will
describe the details of this method in Section 4.1.

DenseFuse [8] is another well-known DL-based fusion architecture for extracting and preserving
most of the deep features of both RGB and IR images in a middle fusion fashion. In [1], a late fusion
method is proposed based on the Probabilistic Data Association (PDA) [12] in order to produce object
region proposals by fusing detection results from RGB, IR, radar and LiDAR. Then, a CNN is applied
on the top of region proposals for classifying the interest objects within the regions. DyFusion [13] is a
decision level fusion for maritime vessel classification. It first uses a CNN to generate the probabilities
over maritime vessel classes for each input sensor. Subsequently, a fusion part updates the sensor
probabilities by considering the contextual data.

PointFusion [14] leverages both image and three-dimensional (3D) point cloud data based on a late
fusion architecture to perform target detection. The image data and point cloud data are independently
processed by a CNN and then their results are combined to estimate object bounding boxes from
image and point cloud data. The main contribution of PointFusion is using using heterogeneous
network architectures. Moreover, the raw point cloud data is directly handled using a PointNet model,
which avoids time consuming input pre-process such as quantization or projection.

CNNs for object detection: CNN were recently used in the development of object detection,
as they are capable exploiting unknown structures in training data for discovering good
representations [15]. The CNN-based object detectors are divided into two categories: two-stage
detectors and one-stage detectors. Two-stage detectors employ an external module for generating
interest object region proposals and their speed usually slower than one-stage detectors. In contrast,
one-stage object detectors integrate region proposition and classification into one single stage. However,
two-stage detectors usually have higher detection accuracy when compared to the one-stage detectors.
Popular two-stage detectors include R-CNN [16], Fast/Faster R-CNN [17,18], and R-FCN [19].
Between one-stage detectors, SSD [20] and YOLO [21] are most common.

Region-based Convolutional Neural Network (R-CNN) [16], which leads to substantial gains in
object detection accuracy. R-CNN first identifies region proposals and then classifies these regions
into object categories or background using a CNN. One disadvantage of R-CNN is that it performs
exhaustive search and proposes large number of regions from an image. Therefore, RCNN leads
to time-consuming and energy-inefficient computation. The extension version of R-CNN is Fast
R-CNN [17] which uses CNN to generate feature map straight from the input image instead of regions.
Both R-CNN and Fast R-CNN use selective search for obtaining the region proposals. In order to reduce
running time of Fast R-CNN, Faster R-CNN [18] omits the selective search method for generating
object region proposals. Instead of using selective search, Faster R-CNN identifies the regions by using
a separate network.

Maritime vessel detection: A few studies utilized object detection algorithms from waterborne
images beyond maritime vessel detection from spaceborne imagery [22]. Some of these works have
focused on classifying the interest objects from the background [23], others employed the Histogram of
Oriented Gradients (HOG) approach using sliding-windows [24]. Recently, CNNs have been used for
seaborne vessel detection. However, developing more new dataset and applications are necessary for
autonomous maritime navigation. For instance, the Singapore Maritime Dataset is used in [25] for ship
detection under a new proposed model, YOLO [21]. In [26], a contextual region-based convolutional
neural network with multi-layer fusion is proposed for ship detection. It consists of a region proposal
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network (RPN) and an object detection network with contextual features. Their results show that the
additional contextual features provide more information for detection. However, this method can not
detect small objects efficiently. In [27], an approach based on selective search is presented in order to
extract the initial region proposals from RGB images. Subsequently, the initial proposals are filtered
using the information from other sensors in order to find more dense proposals. Finally, a CNN is
employed to identify the class of objects within the final proposals. The results are collected based on
the marine data that were collected for the Advanced Autonomous Waterborne Applications Initiative
(AAWA) project [28].

In [29], another novel dataset, SeaShips, consisting of a collection of in-shore and offshore ship
images is introduced. Moreover, they used three object detectors (Faster R-CNN [18], SSD [20],
and YOLO [21]) for detecting maritime vessels. In [30], a maritime vessel image dataset from a Vessel
Tracking System (VST) is collected. This dataset contains authentic situations from traffic management
operators. In addition, they proposed a SSD detector in order to identify vessels.

3. The Proposed Early Fusion Architecture

In this architecture, fusion happens at a very low abstraction level. As shown in Figure 1, the early
fusion architecture concatenates RGB and IR images and produces a tensor with four channels (three
channels from RGB and one channel from IR). This four-channel tensor is used as an input for a
detector network. The intuition behind this is simple, since the features of the concatenated image
should contain both information from RGB and IR. The detector produces Bounding Boxes (BBs) from
the feature maps to localize the vessels. The localization is determined with a box that the top-left
corner’s coordinate (x1, y1) and bottom-right corner’s coordinate (x2, y2). Moreover, each bounding
box is associated with a confidence score s, which indicates how likely does the bounding box contain a
vessel. The bounding boxes with the highest confidence are kept in order to filter by a Non-Maximum
Suppression (NMS). NMS is a popular post-processing method in object detection methods [5,18] for
filtering redundant bounding boxes and obtaining final detections.

Input RGB and IR imageS 
(4 channels input )

Detector

(A)

(B) (C)

Output image
BBs, scores, labels

Vessel:0.89
Vessel:0.91Vessel:0.39

Figure 1. An overview of the proposed early fusion architecture. (A) The 3-channel RGB input image
and 1-channel IR image are concatenated. (B) Subsequently, the produced four-channel input data
is processed by a detector in order to robustly detect vessels. (C) The output image consists of the
predicted BBs and corresponding scores and labels.
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4. The Proposed Middle Fusion Architecture

The middle fusion architecture consists of two layers, as illustrated in Figure 2. The first layer is a
fuse layer that combines the information given by two RGB and IR cameras and constructs a fused
image (Figure 2C). The fused image represents the thermal radiation information in infrared images
and detailed texture information in visible images. Afterwards, a detector layer (Figure 2D) performs
detection on the fused image in order to generate the object bounding box proposals.

Input RGB image

Input IR image

Detector

(A)

(B)

(C) (D)

Output image

BBs, scores, labels

Vessel:0.81
Vessel:067

(E)

Fused image

Figure 2. An overview of the proposed middle fusion architecture. The original input images (A,B) are
fused using by an image fusion method in order to provide complementary information for object
detection. (C) The image fusion method can be one of the mentioned method in Sections 4.1–4.7.
(D) Subsequently, the fused image is processed by a detector in order to detect and localize marine
vessels. (E) The output image localizes the detected vessels with the corresponded scores and labels.

To generate the fused image in the fuse layer, we employed three DL-based image fusion methods
(see Sections 4.1–4.3) and four traditional image fusion methods (see Sections 4.4–4.7). Here, we briefly
review the tested image fusion methods, three DL and four traditional, which were evaluated in this
work. The DL-based methods include: deep learning framework based on VGG19 and Multi-Layer
(VGG-ML) [10], DenseFuse [8], and ResNet and Zero-phase Component Analysis-based method
(ResNet-ZCA) [31]. The traditional fusion algorithms are categorized into two main groups: Multi-Scale
Decomposition (MSD)-based methods [32] and Sparse Representation (SR)-based methods [33,34]
according to the the fusion strategies. The MSD-based methods usually use different transform
functions: pyramidal and discrete wavelet. The SR-based methods calculate the activity level of input
images in a sparse domain. In this work, we utilized the weighted least square [32] as a MSD-based
method and convolutional sparse representation [35] as a common SR-based method.

4.1. Deep Learning Framework Based on VGG19 and Multi-Layers

Deep learning framework based on VGG19 and Multi-layer (VGG-ML) [10] can combine the
features from two source IR and RGB images and generate a fused image. For this purpose, the source
images are firstly decomposed into base and details parts using the image decomposition method [36].
The base part of each source image contains the common features and redundant information and
obtains it by the average filter. The details part represents the detail contents of source images and
it produces by subtracting the base part from the source image. The base parts of both images are
then fused by a weighted average strategy. For the detail parts, a pre-trained VGG19 network [37]
obtains deep features from source images. Finally, the base and detail parts are added for creating a
final output fused image.
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4.2. DenseFuse

DenseFuse [8] is a deep network including three elements: encoder, fusion, and decoder.
For testing the network, the encoder first extracts and preserves most deep features of both input RGB
and IR images using DenseBlock [38] architecture. DenseBlock contains three cascaded convolutional
layers. Subsequently, the fusion layer uses either additional fusion [38] or l1-norm fusion strategy for
fusing the extracted features maps from both source images. Finally, the three convolutional-layered
decoders receive the fused feature maps in order to create a fused image. For training the network,
only encoder and decoder are employed to reconstruct the training images and fix weights of the
network. In order to reconstruct the images, DenseFuse aims to reduce the λ weighted combination of
pixel and structural similarity losses.

4.3. ResNet and Zero-Phase Component Analysis-Based Fusion

ResNet and Zero-Phase Component Analysis-based (ResNet-ZCA) method [31] has shown to be
an efficient method for image fusion. Firstly, it employs ResNet [39] for extracting deep features from
source images. Subsequently, ZCA [40] and l1-norm are used in order to project deep features into
sparse domain. The initial weight maps are obtained by l1-norm. Finally, a bicubic interpolation is
used to resize the initial weight maps to source image size. The final weight maps are generated by
soft-max and the fusion image is reconstructed by final weight maps and source images.

4.4. Visual Saliency Map and Weighted Least Square

Visual Saliency Map and Weighted Least Square (VSM-WLS) [32] is a multi-scale fusion method
that is based on WLS optimization and VSM. To perform Multi-Scale Decomposition (MSD), it first
employs the rolling guidance filter [41] and Gaussian filter and decomposes both source IR and
RGB images into base and detail parts. Afterwards, the fusion of base parts is carried by using a
weighted average technique in order to enhance the fused image contrast. For fusing the detail parts,
WLS optimization is used. Finally, inverse MSD is employed on the fused base and details parts to
construct the output fused image.

4.5. Cross Bilateral Filter

Cross Bilateral Filtering (CBF) [42] is a non-iterative and local nonlinear method that combines
an edge-stopping function with a low-pass filter for reducing the filter effect wherever the intensity
between neighbouring pixels is large. It can filter the images while preserving the edges. Initially, CBF is
applied to both RGB and IR source images to extract the base images. Subsequently, the detailed images
are obtained by subtracting the base images from the original IR and RGB images. Finally, the fused
image is obtained by multiplying the weights with input images, followed by a weight normalization.

4.6. Convolutional Sparse Representation

Convolutional Sparse Representation (ConvSR) [35] address the problem of SR-based image
fusion methods by considering a global approach that aims the SR-based image fusion of the whole
image rather than of local image patch windows. The global approach enhances the detail preservation
and model sensitivity regarding mis-registration. ConvSR consists of hierarchical layers, where each
layer includes an image decomposition to divide the input images into base and detail parts. The detail
parts are combined using a choose-max strategy. An averaging strategy is applied in order to fuse the
base parts and built the fused coefficient maps. The output fused image is built by combining the base
and detailed layers.

4.7. Guided Filtering Based Fusion Method

Guided Filtering based Fusion (GFF) [36] method can generate a highly informative fused image
based on a two-scale decomposition strategy. This strategy produces base and detail layers containing
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large scale variations in intensity and small scale details, respectively. Finally, a guided filtering-based
weighted average technique is employed in order to make full use of spatial consistency for fusion of
the base and detail layers.

Input RGB image

Input IR image

Detector1

NMS

O RGB 

O IR

+ O RGB+IR

(A)

(B)

(C)

(D)

Detector2

Output image

BBs, scores, labels

Vessel:0.63
Vessel:0.96

Vessel:0.87

(E)

Figure 3. An overview of the proposed late fusion architecture. (A) The input RGB image and (B) IR
image are feed into the Detector1 and Detector2, respectively. (C) These detectors independently
extract features from the corresponding input image. (D) The architecture concatenates outputs
of detectors (ORGB,OIR), and then a final set of object proposals is obtained after none-maximum
suppression. (E) The final output containing predicted BBs, which are associated with a category label
and a confidence score.

5. The Proposed Late Fusion Architecture

Figure 3 demonstrates the proposed late fusion architecture. The late fusion architecture first
combines the detection results from two detectors. These two detectors have similar architecture.
One detector takes a RGB image as input and the other one takes the corresponding IR image as
input. To be more specific, a separate detector is utilized in order to process each input camera
image independently and extracts feature from the image. This process involves the estimation of the
bounding box proposals, which indicate the objects’ localization in the image. Subsequently, the output
bounding boxes of two detectors (ORGB,OIR) are concatenated to explicitly capture complementary
information of RGB and IR. In this case, fusion happens at the decision level. After that, the following
steps are applied on the all boxes (ORGB + OIR) in order to generate final boxes and remove redundant
detections, as follows:

1. It first discards all those predicted boxes which the score value is lower than 0.6. Subsequently,
it assumes the box with the largest score value among the remaining candidate as the accurate
predicted box bbest (Figure4A).

2. Finally, it removes any remaining boxes that the Intersection over Union (IoU) is lower than α

with bbest (Figure4B). Each box bi is assumed as a final box if it is overlapped by the bbest, according
to the following function:

f (bi, bbest) =

{
0, if IoU < α

1, if IoU >= α
(1)

where α is Intersection of Unit (IoU) threshold between two bounding boxes and it is determined
experimentally. Based on a series of preliminary experiments, we got the best performance with
α = 0.5. IoU is intersection of two boxes divided by their union.
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IoU(bi, bbest) =
Sbi

⋂
Sbbest

Sbi

⋃
Sbbest

(2)

where Sb represents the area of bounding box b.

Ground-truth

Detction by RGB-based detector

Detction by IR-based detector

S=0.86

S=0.62

S=0.86(pbest)

IoU=0.71

S=0.62

IoU=0.12
S=0.22

S=0.16

(A)

S=0.86(pbest)

IoU=0.71

(B)

Figure 4. An example of applying NMS in the proposed late fusion architecture: (A) the predicted BBs
which their score is lower than 0.6 are removed and then (B) each box between the remaining boxes is
assumed as an output box if IoU between ground truth BB and predicted BB is more or equal than 0.5.

6. Experimental Setup

6.1. Datasets

We collect a real marine dataset by a vessel in Finnish archipelago for evaluating our proposed
fusion architectures. The dataset is recorded by two sensors continuously, providing data from various
environmental and geographical scenarios. This sensor system includes RGB (visible spectrum) and IR
(thermal) camera arrays, providing output that can be synchronized and stitched to form panoramic
images. The individual visible cameras have full HD resolution while the thermal cameras have
VGA resolution. Both camera types have a horizontal field of view of approximately 35 degrees.
For image alignment in this sensor set, the registration parameters are manually determined by
finding corresponding features in calibration images and minimizing alignment mismatch. Therefore,
our dataset contains well-aligned IR/RGB images. The images were sampled one frame per second in
and stored in MPEG format. The images show maritime scenarios under different illumination
conditions with various marine vessels. We manually annotated all vessels (passenger vessel,
motorboat, sailboat, or docked vessel) within each RGB sequence with a bounding box as accurately
as possible. However, all of the vessels have a general label “Vessel” in our datatset. The bounding
box should contain all pixels that belong to that object and, at the same time, be as tight as possible.
In addition, two different scenarios are proposed in order to evaluate the proposed architectures in
different light condition, time imaging and location.

Scenario1: the training dataset is collected by two visible and infrared cameras at daytime. In this
scenario, the training dataset consists of 7250 pairs of well-aligned multispectral images captured by
cameras. For evaluation, a separate test dataset is gathered in the same light and weather condition
contains 1750 RGB/IR pair images. Figure 5a demonstrates a sample of RGB images and corresponding
IR in this scenario. The number of vessels in the training and test datasets is determined in Table 1.

Scenario2: RGB and IR images are collected by a vessel operating near the harbour at nigh
time. This data represent a challenging data (dark and oversaturated areas) in marine environment.
The source videos for generating training and test images are different. The training and test datasets
consist of 2250 and 1000 pair RGB/IR images, respectively. Table 1 shows the number of vessels in each
dataset. Furthermore, Figure 5b illustrates an IR/RGB pair of a sample of our data in this scenario.

The original size of all images is 3240 × 944 pixels for both scenarios. To reduce the computation
time, we re-sized the original images into 1200 × 400 pixels.
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Table 1. Number of vessels in our training and testing marine datasets for each Scenario.

Scenario Dataset Number of Vessel

1 (daytime) Training 46,890
Test 15,312

2 (nightime) Training 5000
Test 3500

R
G

B
IR

(a) Day time (b) Night time

Figure 5. Example of RGB and InfRared (IR) pair images in the real maritime dataset at (a) Scenario1
and (b) Scenario2.

6.2. Implementation Details

Here, we give more information regarding the method parameters. The parameter setting of
the proposed (1) image fusion methods in the middle architecture and (2) CNN-based detector in all
architectures are as follows:

Image fusion methods: we selected all parameters of the image fusion methods based on the
existing works which are described in Section 4. VGG-ML fuses the detailes parts by using VGG-19 [37]
with four relu layers. The weight values for pixel in two base part images α1 = 0.5 and α2 = 0.5
in VGG-ML. DenseFuse is pre-trained on MS-COCO [43] and utilizes two methodologies for fusion:
addition and l1-norm. DenseFuse achieves the minimum pixel and structural similarity losses when λ

is 100. For ResNet-ZCA, we used ResNet50 with l1-norm. ResNet50 is pre-trained by ImageNet [44].
In VSM-WLS, the initial spatial weight, σs, is 2. The number of decomposition levels N is 4 and
λ = 0.01. CBF uses the neighborhood kernel with 11 × 11 size, as it can achieve good enough fusion
results [42]. The value of σs and σr are 1.8 and 25, respectively. Moreover, the parameter λ is fixed at
0.01 in ConvSR. In the GFF experiment, the parameters of the guided filter are set as r1 = 45, ε1 = 0.3,
r2 = 7 and ε2 = 10−6. All of the image fusion methods require the grayscale images transformed from
the input RGB images except DenseFuse and VSM-WLS, .

CNN-based detectors: we use Faster R-CNN as a detector in all proposed architectures. The CNN
parameter are chosen based on several experimental results. Faster R-CNN is trained for 900 k
iterations with a learning rate of 0.0003 and then 1200k iterarions with a learning rate of 0.000003.
We use 4 sub-octave scales (0.25, 0.5, 1.0, 2.0) and three aspect ratios [0.5, 1.0, 2.0] mainly motivated by
handling small objects on this dataset.

Since Microsoft COCO dataset [43] consists of 3146 images of marine vessels, the Faster R-CNN
is pre-trained on it to learn more good feature representation. Subsequently, the model is fine-tuned
on our data. We utilize different source videos to train and test architectures. These fixed parameter
setting can obtain good results for our experiments done in this work.
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7. Experimental Results

In this work, three multi-modal architectures were considered for vessel detection: early fusion,
middle fusion, and late fusion. In addition, two uni-modal architectures are proposed, which utilized
RGB or IR camera images. We have done three experiments: (1) evaluation of seven image fusion
methods in the middle fusion architecture, (2) evaluation of all fusion architectures, and (3) a visual
comparison between all architectures in each scenario.

7.1. Comparison of Image Fusion Methods

In the propose middle fusion architecture, an image fusion method is first employed to combine
source RGB and IR images and produce a fused image (see Sections 4.1–4.7). Subsequently, a CNN is
applied on the obtained fused image for detection. Therefore, the image fusion method provides an
essential functionality in our proposed middle fusion architecture. For this reason, we first evaluated
the performance of three DL-based image fusion methods and four traditional methods. The details
of our experiment are introduced in Section 6.2. These methods are compared with six common
assessment metrics to conduct qualitative and quantitative experiments. These metrics include:

1. Structural SIMilarity (SSIM) [45] is an objective image quality metric to obtain contrast, structure,
and illuminates between the source image and fused image.

2. Feature Mutual Information (FMI) [46] is a quality metric for calculating the mutual information
between source and fused images. Here, wavelet (FMIw) and discrete cosine (FMIdct) features
are used for measuring the amount of information conducted from source images to fused image.

3. Entropy (EN) measures the amount of information presented in the fused image on the basis of
information theory [47]. The better fusion results have minimum entropy value.

4. Quality (QAB/F) [48] metric represents the visual information that is associated with the edge
information. It computes the amount of edge preservation from input images (A and B) to the
fused image (F) using edge strength and orientation.

5. Noise (NAB/F) is a fusion artifacts metric introduced by [49] which calculates the amount of
added noise or artifacts in the fused image (F) from two input images (A and B).

6. Sum of the Correlations of Differences (SCD) metric [50] measures the complementary information
transferred from the input images to the fused image.

Figures 6 and 7 demonstrate the average values of performance metrics for whole test dataset
in two scenarios. In Scenario1 (Figure 6), the results show that DL-based fusion methods perform
better than traditional methods with the larger values of FMIw, FMIdct, and SSIM. The reason is these
methods (VGG-ML, DenseFuse, and ResNet-ZCA) can extract more structural and rich features that
are based on their DL architectures. Between these DL-based methods, ResNet-ZCA has the highest
value of FMIw, FMIdct, and SSIM. However, DenseFuse provide more natural results and contain
less artificial noise as it has the minimum values of NAB/F, QAB/F, EN and SCD. Between traditional
methods, GFF can achieve more complementary information in the fused image, since it has the
maximum value of FMIw, FMIdct, and SSIM.

Figure 7 shows the average values of six quality metrics for Scenario2. We can observe that
DL-based method is roughly more natural and less noise than other traditional methods. Furthermore,
the results represent DenseFuse can generate the fused image with less artificial information and noise
as the value of NAB/F is low. However, ResNet-ZCA provide more structural information and features,
as it has the highest value of FMIw, FMIdct, and SSIM. GFF performs betters than other traditional
image fusion methods in terms of FMIw, FMIdct, and SSIM. This is because GFF can effectively keep
the contrast in the fused image.
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Figure 6. The average values of six quality metrics for test images obtained by the deep and traditional
methods in Scenario1.

Figure 7. The average values of six quality metrics for test fused images obtained by the deep and
traditional methods in Scenario2.

Moreover, we performed a visual comparison between all image fusion methods for an example
test image in each scenario. In the scenario1, the obtained fused image by DL-based method contains
more frequency details and edge preservation (Figure 8A–D). The fused image that is generated by
VSM-WLS, CBF, ConvSR, and GFF includes more artificial noise and their saliency features are not clear.
CBF and ConvSR produce the fused images with more artifacts as well. On the contrary, the fused
images obtained by VGG-Ml, DenseFuse, ResNet-ZCA and VSM-WLS look more natural and less
noise. Generally, the obtained results of these DL-based methods are roughly more clear than other
traditional methods in Scenario1.

Figure 9 shows the fused image obtained by DL and traditional image fusion methods in the
Scenario2. From the Figure 9A–E, it is observed that VGG-Ml, DenseFuse, ResNet-ZCA, and VSM-WLS
provide a more pleasing image with clear texture details. From the red box (part of a land), it is observed
the fused image by VGG-Ml contains less noise, and details are more clearer than other image fusion
methods. In contrast, CBF, ConvSR, and GFF (Figure 9F–H) produce results with more noise, color
distortion and contrast loss.
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Figure 8. Qualitative results of the fused image in Scenario1 by (A) VGG-ML, (B) DenseFuse-add,
(C) DenseFuse-l1, (D) ResNet-ZCA, (E) VSM-WLS, (F) CBF, (G) ConvSR, and (H) GFF on the original
RGB and IR images.

Figure 9. Qualitative results of the fused image in Scenario2 by (A) VGG-ML, (B) DenseFuse-add,
(C) DenseFuse-l1, (D) ResNet-ZCA, (E) VSM-WLS, (F) CBF, (G) ConvSR, and (H) GFF on the original
RGB and IR images.

Processing Time: Table 2 shows the running time (second) of all image fusion methods for one
image. The tested system specification is: Intel(R) Core(TM) i7-4702MQ CPU @ 2.20 GHz×8 CPU
with 15.4 GB RAM. The running time for obtaining the fused image by ResNet-ZCA is 4.9 s per image.
ResNet-ZCA has the minimum time between DL-based methods. In addition, GFF can generate a
fused image in 0.4 s that is lower than ResNet-ZCA.
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Table 2. The running time (seconds) of the deep and traditional image fusion methods for one image.

VGG-ML DenseFuse(add,le2) DenseFuse(l1,le2) ResNet-ZCA VSM-WLS CBF ConvSR GFF

10.1 12.4 13.1 4.9 6.6 38.7 175.35 0.4

7.2. Multi-Modal Architectures vs. Vni-Modal Architectures

We compared the fusion architectures for the test dataset in terms of Average Precision (AP) as a
main detection accuracy metrics. For this purpose, we measured the IoU of detected bounding boxes
and matching those from ground truth annotations. A detected bounding box result is counted as a
true positive if the IoU with a ground truth one exceeds 50%. Unmatched detected bounding boxes are
counted as false positives and unmatched ground truth ones are counted as false negatives.

Table 3 shows that AP for the proposed architectures in each scenario. The best results are
highlighted in bold. This results show the effect of the fusion on the object detection performance, as we
compared uni-modal and multi-modal architectures. It is observed from the result, the multi-modal
middle architecture generates reliable detection results (bold font in Table 3) for both scenarios
(scenario1:79.1% and scenario2:61.6%), as it can provide complementary information when compared
with the uni-modal architectures. However, the performance can be improved when the dataset
contains more bigger targets. Our dataset consists of large amount of small targets which occupying
areas lower than 16 by 16 pixels. Detecting very small objects with a few pixels is still challenging
because of less information being associated with them.

In addition, the results show that uni-modal RGB-based architecture can provide higher accuracy
in comparison with uni-modal IR-based architecture. For instance, the accuracy of uni-modal
RGB-based architecture is 9.0% and 9.7% more than the uni-modal IR-based architecture for scenario1
and 2, respectively. This is because it can learn richer features from color images than infrared images.
Moreover, the results show that DenseFuse totally have higher accuracy in comparison with other
middle-fusion architectures.

Table 3. Average Precision (AP) (in %) on the test dataset of two scenarios.

Architecture Input Images Fusion Scenario1 Scenario2

Uni-modal RGB - 63.8 51.5

Uni-modal IR - 54.5 41.8

Multi-modal early fusion RGB + IR 4 channels 66.7 58.4

Multi-modal middle fusion RGB + IR

VGG-ML 75.4 55.9
DenseFuse (add,le2) 77.3 57.8
DenseFuse (l1,le2) 79.1 61.6

ResNet-ZCA 73.1 59.6
VSM-WLS 67.3 55.4

CBF 63.9 49.8
ConvSR 62.7 49.5

GFF 68.4 60.7

Multi-modal late fusion RGB + IR NMS 60.7 57.2

7.3. Qualitative Results

Figure 10 demonstrates an examples of the detection results from the visible-only architecture,
infrared-only architecture and multi-modal architectures in each scenario (day-time and night-time).
We observe that the proposed fusion architectures is better at the detection of objects than the uni-modal
architectures. Note that, because the fusion architectures can integrate information from both color
and infrared images. The fusion architectures successfully detected the size/location of the bounding
boxes. In the third row, our middle- fusion architecture has detected marine vessels that other
architectures have missed. Moreover, the middle-fusion architecture is able to detect small objects
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with a few pixels as shown in Figure 10 and many of them are detected by our framework. It shows
the generalisation capability of the proposed middle-fusion architecture and indicates its potentials in
executing two-dimensional (2D) object detection in real situations beyond a pre-designed dataset.
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Figure 10. Qualitative vessel detection results for (A) Scenario1 and (B) Scenario2 based on uni-modal
based on RGB, uni-modal based on IR, multi-modal early fusion, multi-modal middle fusion,
and multi-modal late fusion architectures. The ground truth bounding boxes are shown as green
rectangles. Predicted boxes by the architectures are depicted as red bounding boxes. Each output box
is associated with a category label and a score value in [0, 1].

8. Conclusions

In this paper, we proposed three image fusion architectures for vessel detection in marine
environments. The architectures can combine the thermal radiation information on infrared images and
the texture detail information on visible images. They also utilized a simple fast CNN, Faster R-CNN,
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in order to carry out the final detection task. The evaluation on our real marine dataset show that the
proposed middle-fusion architecture is able to detect the vessel at the state of the art accuracy.

For future work, we plan to improve the detection network of these architectures in order to
address the detection problem of very small objects (less than 16 by 16 pixels) in our data. We will
investigate the effect of using transfer learning and domain-specific data on the detection performance.
We also plan to extend our fusion framework by considering other common sensors in autonomous
vessels, such as LiDAR and radar, besides IR and RGB cameras.
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