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Abstract—Safety and security are critical issues in maritime
environment. Automatic and reliable object detection based on
multi-sensor data fusion is one of the efficient way for improving
these issues in intelligent systems. In this paper, we propose an
early fusion framework to achieve a robust object detection.
The framework firstly utilizes a fusion strategy to combine
both visible and infrared images and generates fused images.
The resulting fused images are then processed by a simple
dense convolutional neural network based detector, RetinaNet, to
predict multiple 2D box hypotheses and the infrared confidences.
To evaluate the proposed framework, we collected a real marine
dataset using a sensor system onboard a vessel in the Finnish
archipelago. This system is used for developing autonomous
vessels, and records data in a range of operation and climatic
and light conditions. The experimental results show that the
proposed fusion framework able to identify the interest of objects
surrounding the vessel substantially better compared with the
baseline approaches.

Index Terms—Autonomous vehicles, object detection, sensor
fusion, convolutional neural networks.

I. INTRODUCTION

Sea transportation is carrying about 90% of the world
trade according to the International Maritime Organization
(IMO) [1]. With the current growth of maritime traffic, security
and safety are vital issues. For this reason, lots of efforts
have been deployed to improve the security and safety in the
maritime environment over the past few years. To develop a
reliable autonomous ships, designing efficient object detection
is a critical task [2]. However, object detection in maritime
environments is still a challenging and complex task due to
varying light, view distances, weather conditions and dynamic
nature of the sea caused by waves. In addition, light reflection,
camera motion and illumination changes may cause to false
detections [3].

One of the main technologies that improve the understand-
ing of the surrounded environment and therefore the robustness
of object detection is sensor fusion. As each individual sensor
has some weakness, combining the data from different sensors
can optimise the situational awareness under all conditions.
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For example, visible cameras provide high resolution images
for the object classification task. Although, infrared cameras
can increase nigh-time navigation safety and detect warm
objects at night time with high accuracy. Therefore, we believe
that multi-sensor data fusion can develop a reliable perception
capability for object detection in autonomous vehicles

Various object detection approaches have been proposed for
autonomous vehicles in recent years. Most of these approaches
utilized a Convolutional Neural Network (CNN) based net-
work. This network is able to learn rich features outperforming
hand-crafted features. Generally, CNN-based object detector
can be divided into two main groups: two-stage [4] and
one-stage detectors [5]. Two-stage object detectors utilize a
classifier on a sparse set of candidate object locations [4]. In
contrast, one-stage object detectors generate dense sampling of
possible object proposal in a faster and simpler fashion. How-
ever, two-stage detectors have usually higher accuracy than
one-stage ones because they maintain a manageable balance
between the foreground and the background. RetinaNet [5]
can match the speed of one-stage detectors while achieving
similar accuracy comparing with all existing state-of-the-art
two-stage detectors. In addition, it has proposed a loss function
that acts as a more effective alternative to previous approaches
for dealing with class imbalance.

In this paper, we present an early fusion or feature-level
fusion framework based on RetinaNet for marine environment.
Our framework performs object detection in two phases, In the
first phase, the fusion framework combines the information
of two source images from the visible and infrared cameras
using visual saliency map based on weighted least square [6].
In the second phase, it employs RetinaNet on the fused image
for detection of the interest objects around the vessel. The
detected object is classified into one of five types of vessel or
navigation buoys. The proposed framework is evaluated on a
real dataset we collected in the Finnish archipelago in different
environmental conditions (i.e. weather conditions, day/night).
In addition, different backbone networks are proposed for
RetinaNet to find the best model. We also study the impact of
fusion on object detection performance. Experimental results
show that our proposed framework outperforms the existing
state-of-the-art approaches. To the best of our knowledge,
currently there are no existing works on using real sensor
fusion data for object detection in maritime environment.

The remainder of the paper is organized as follows. Sec-
tion II discusses some of the most important related works.
The proposed fusion framework is introduced in Section III.



Experimental results are presented in Section IV. Finally, the
conclusions is presented in Section V.

II. RELATED WORK

Image Fusion methods: the main goal of image fusion is to
generate a fused image with complementary information from
the same sensor with several imaging parameters or from the
multiple sensors. Generally, the multi-sensor fusion methods
can be divided into three main groups based on the level of
data abstraction used for fusion. (1) Measurement fusion meth-
ods first convert the data from each sensor to a common form
and then the actual fusion of data is performed in the common
representation. (2) Feature level fusion methods extract the rel-
evant feature of each sensor individually and then the obtained
features are combined into a single vector as an input of a
fusion module. Therefore, the measurement and feature level
fusion methods fuse raw sensor data or concatenate feature
descriptors. (3) Decision level fusion methods independently
perform object detection from each sensor and the outputs of
each sensor are fused at the decision level for final classifica-
tion. The traditional image fusion algorithms can be divided
into three main groups depending on the fusion strategies :
Multi-Scale Decomposition (MSD)-based methods [6], spatial
domain-based methods [7], and Sparse Representation (SR)-
based methods [8]. The MSD-based methods usually employ
pyramidal transforms, discrete wavelet transform, and discrete
wavelet frames. The spatial domain methods usually address
the fusion issue via local spatial features such as gradient,
spatial frequency and local standard deviation. The SR-based
methods measure the activity level of source images in a sparse
domain. Recently, Deep Learning (DL) has shown significant
success for challenging tasks in sensor fusion such as multi-
focus image fusion [9] [10], multi-exposure image fusion [11]
and multi-modality imaging [12] [13].

CNN-based Object Detector: CNN [14] is the most popu-
lar type of neural network for object detection. Inspired by the
success of applying CNN in many challenging object detection
problems [14]-[16], our framework employed a CNN-based
network for this purpose. SqueezeDet [17] employs a CNN for
real-time object detection for autonomous driving. It is based
on a small backend network of SqueezeNet [18] in order to
detect small-size objects. Region-based Convolutional Neural
Networks (R-CNN) [19] led to substantial gains in object
detection accuracy. It first identifies region proposals (i.e.
regions of interest that are likely to contain objects) and then
classifies these regions into object categories or background
using a CNN. One disadvantage of R-CNN is that it computes
the CNN independently on each region proposal, leading to
time-consuming and energy-inefficient computation. In order
to improve computational efficiency, Fast R-CNN [4] omits the
selective search method for generating object region proposals.
In [20], a system based on Fast R-CNN is proposed for
detection and classification of on-road objects. The outputs
of the system are the rectangular bounding boxes and class
information of objects which are useful parameters for motion
planning of the self-driving vehicle. The infrared deep learning

network is found to be robust to variation in object’s view,
lighting and climatic conditions. AlexNet [21], ZFNet [22],
VGGNet [23], ResNet [24] and GoogLeNet [25] are other
popular deep CNNss for object classification and detection.

III. THE PROPOSED FUSION FRAMEWORK

In this section, we describe the proposed fusion frame-
work for object detection. Fig.1 shows an illustration of the
RetinaNet based framework used for object detection. The
framework continuously observes the environment through
two sensors (visible and infrared cameras). Therefore, the
framework considers both sources, visible and infrared images,
as inputs. Object detection is performed in two phases. In the
first phase, the two input images are fused according to the
strategy explained in subsections A. The main goal of this
phase is generating the fused images which are more robust
to imperfect conditions such as mis-registration. In the second
phase, the obtained fused image is processed by an one-stage
CNN-based detector to provide a set of detected objects, as
described in subsection B. The detector employs the deep
RetinaNet architecture is used, considering its efficiency and
accuracy. Each detected object is represented by its position
and class label that indicates whether it is a vessel (passenger
vessel, motorboat, sailboat, docked vessel) or navigation buoy.

A. Visual Saliency Map and Weighted Least Square

Visual Saliency Map and Weighted Least Square (VSM-
WLS) [6] is a multi-scale fusion method based on WLS
optimization and VSM. The method proposes an Multi-Scale
Decomposition (MSD) step using the rolling guidance fil-
ter [26] and Gaussian filter to decompose the infrared and
visible images into base and detail layers. MSD tries to obtain
an effective scale awareness and edge preservation when
decomposing images. Decomposed base layers are fused using
a weighted average technique to enhance the contrast of the
fused image. In addition, a weighted least square optimization
is used to fuse the detail layers to enhance the max-absolute
fusion rule by considering different characteristics of visible
and infrared images. Finally, inverse MSD is applied to the
output of both previous steps to construct the final fused image.

B. RetinaNet

RetinaNet [5] is a simple dense detector which contains a
backbone network and two sub-networks. First, the backbone
network computes a convolutional feature map over an entire
input image. Then, the first sub-network performs convolu-
tional object classification on the backbone’s output and the
second sub-network applies convolutional bounding box re-
gression. The backbone network of RetinaNet uses the Feature
Pyramid Network (FPN) [27] in order to efficiently constructs
a rich, multi-scale feature pyramid from a single resolution
input image with a top-down pathway and lateral connections.
In our framework, the fused images can be applied as input to a
Residual Network (ResNet50 and ResNet101) [24] or Visual
Geometry Group (VGG) net [28] encoder, which processes
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Fig. 1. Proposed RetinaNet based fusion framework. The original input images are of size 3240 x 944 pixels. They are fused using VSM-WLS in order to
provide complementary information for object detection.Then, the fused image is processed by RetinaNet in order to detect and localize objects around the

vessel.

the image through convolution kernels and generates deep fea-
tures. In addition, RetinaNet proposed the focal loss to address
the problem of class imbalance and unequal contribution of
positive and negative samples as follows:

FL(pt) = —a:(1 —p)log(pe) (D

where the parameters o and v control the balance between
negative and positive samples.

IV. EXPERIMENTAL SETUP AND RESULTS
A. Data Description

Data was collected using a sensor system onboard a vessel
in the Finnish archipelago. This sensor system includes vis-
ible (visible spectrum) and infrared (thermal) camera arrays,
providing output which can be synchronized and stitched to
form panoramic images. The individual visible cameras have
full HD resolution, while the thermal cameras have VGA
resolution. Both camera types have horizontal field of view
approximately 35 degrees. Data is collected from this sensor
set continuously, providing data from various environmental
and geographical scenarios. Registration parameters for image
alignment in this sensor set have been determined by manually
finding corresponding features in calibration images and by
minimizing alignment mismatch. The data shows maritime
scenarios with various objects such as ships and other vessels.
For the experiments, we selected 5000 and 1750 images for
training and testing the network, respectively. Size of each
image is 3240 x 944 pixels. The original training images
are augmented via a number of random transformations for
training RetinaNet. Random transformations were applied on
the images including rotation, cropping, swirl, vertical flip
and horizontal flip. This kind of data augmentation has been
widely used in previous research. We manually annotated the
boundind boxes and the labels for the six object classes (five
types of vessels, navigation buoy) on our dataset. Table I shows
the distribution of the classes in the training and test datasets
for each camera. Note that any far away vessels that could
not be visually recognized as “passenger vessel”, motorboat”,

”sailboat” or “docked vessel”, were placed under the general
label “vessel”.

B. CNN network Hyperparameter

The number of layers depends on the type of backbone in
RetinaNet. If the backbone is ResNet50 or ResNetl101, the
number of layers is 50 and 110, respectively. VGG19 has 19
layers. As there is no guarantee that the deepest network has
better performance, various network depths and backbones are
tested.

Adam optimizer is used for the stochastic optimization in
deep RetinaNet. The other hyperparameters of the network
are as follows: anchors are assigned to ground-truth object
boxes using an Intersection-over-Union (IoU) threshold of 0.5.
We sweep over the number of scale and aspect ratio anchors
used at each pyramid level in FPN. We consider cases from a
single square anchor at each location to 12 anchors per location
spanning 4 sub-octave scales (1,1.2, 1.6) and 3 aspect ratios
[0.5, 1, 2, 3]. The learning rate was initialized at 0.00001
with reduction factor of 0.1. The epoch number was 50 and
the number of iteration in each epoch was 100. Two losses
were computed: the classification loss with focal loss and
the regression loss with smooth L1. For the focal loss, the
parameters « and y in Equation (1) are 0.25 and 2 respectively.

C. Evaluation

Effect of fusion: we study how the fusion can effect on the
object detection performance. For this purpose, we compare
two uni-modal frameworks with our multi-modal framework.
The uni-modal framework utilizes only the visible or infrared
images to detect the interest objects around of vessel. However,
our proposed fusion framework combines the information from
two input infrared and visible images using the proposed
image fusion methods. In addition, RetinaNet is trained based
on three different backbone networks in our experiments:
ResNet50, ResNetlOl and VGGI19 for our experiments. It
firstly is pre-trained on ImageNet dataset in order to learn
good feature representation. Then, they are fine-tuned on our
data.



TABLE I
NUMBER OF EACH OBJECT IN TRAINING AND TESTING MARINE DATASETS FOR EACH CAMERA

Input images | Passenger vessel | Motorboat | Sailboat | Docked Vessel | Vessel | Navigation buoy Total

Training dataset Visible 8481 10849 4753 10500 10250 3500 48333
Infrared 8481 11349 5006 10750 10500 3500 49586

Test dataset Visible 1000 3750 3250 214 4750 500 10464
Infrared 574 3750 3250 214 4750 500 10464

To evaluate the proposed fusion framework, we used the
test dataset and measured the Average Precision (%AP) for
each class. Table II shows the results of uni-modal and multi-
modal frameworks using various backbone networks. The IoU
threshold is 0.5 for all classes in all frameworks. The uni-
modal framework based on visible images can get the highest
accuracy 67.3 and 63.9 AP for two classes "Docked vessel”
and “Passenger vessel”, respectively. The highest accuracy
(64.8) is achieved by the ResNet101 backbone for “Docked
vessel” class when the framework performs object detection
based on only infrared images. Our fusion framework has
higher accuracy for all objects compared with other frame-
works. Therefore, the results show that our framework can
get the largest gains for “passenger vessels”(68.4% AP) and
”Docked vessel” (58.7% AP). Objects in these categories ap-
pear larger, so their detection is benefited the most from high-
resolution camera data. Based on our results, the proposed
RetinaNet-based framework cannot get properly detect small
objects which are represented by a low number of pixels (less
than 16 x 16 pixels) in the image. These small objects mostly
belong to the vessel and navigation buoy classes.

Qualitative Results: Fig 2 and Fig 3 demonstrate two
examples of the detection results from the visible-only frame-
work, infrared-only framework and multi-modal framework.
We observe that the proposed fusion framework is better at
detection of objects than the uni-modal framework. Detecting
very small objects with a few pixels is still challenging as
shown in Fig 3 and many of them are not detected by our
framework. However, our framework still outperforms others
as shown in Table II.

V. CONCLUSION

In this paper, an early fusion framework is proposed in
order to detect the interest objects in marine environment.
In the proposed framework, the images from both visible
and infrared cameras are fused right at the beginning and
then an one-stage fast detector, RetinaNet, recognizes and
localizes the objects in the fused images. To demonstrate
the effectiveness of the proposed framework, we compared
it with two uni-modal frameworks applied on only visible or
infrared images. We also evaluate the effects of more powerful
backbone networks on the performance of RetinaNet in our
framework. The experimental results on real marine data show
that our multi-modal framework can achieve higher detection
accuracy comparison with two another uni-modal frameworks.
Our framework is effectively able to detect and classify objects
into one of vessel type or navigation buoy in the real marine

dataset, as long as their apparent image size is more than
16 x 16 pixels.

For future work, the effects of object size and distance on
the performance of our framework will be studied. As it is very
challenging to accurately detect small objects, an improved
network structure of RetinaNet will be investigated in the
future for this purpose. Further, we will extend our fusion
framework by using data from lidar and radar besides RGB
and IR cameras to improve the detection results. In addition,
more effective fusion schemes based on DL could be further
developed to pursue better fusion performance.
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{a) Uni-modal framework based on visible images
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(c) Multi-modal framework based on visible and infrared images

Fig. 2. Qualitative results of the proposed framework on an example image from our dataset. The ground truth bounding boxes are shown in green. Red
bounding boxes are the predicted bounding box for each ground truth bounding box.
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(b) Uni-modal framework based on infrared images
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(c) Multi-modal framework based on visible and infrared images

Fig. 3. Qualitative results on example image from our dataset with more small objects. The ground truth bounding boxes are shown in green. Red bounding
boxes are the predicted bounding box to each ground truth bounding box.



	Blank Page

