51 research outputs found

    A RBF partition of unity collocation method based on finite difference for initial-boundary value problems

    Full text link
    Meshfree radial basis function (RBF) methods are popular tools used to numerically solve partial differential equations (PDEs). They take advantage of being flexible with respect to geometry, easy to implement in higher dimensions, and can also provide high order convergence. Since one of the main disadvantages of global RBF-based methods is generally the computational cost associated with the solution of large linear systems, in this paper we focus on a localizing RBF partition of unity method (RBF-PUM) based on a finite difference (FD) scheme. Specifically, we propose a new RBF-PUM-FD collocation method, which can successfully be applied to solve time-dependent PDEs. This approach allows to significantly decrease ill-conditioning of traditional RBF-based methods. Moreover, the RBF-PUM-FD scheme results in a sparse matrix system, reducing the computational effort but maintaining at the same time a high level of accuracy. Numerical experiments show performances of our collocation scheme on two benchmark problems, involving unsteady convection-diffusion and pseudo-parabolic equations

    A low cost and highly accurate technique for big data spatial-temporal interpolation

    Get PDF
    The high velocity, variety and volume of data generation by today's systems have necessitated Big Data (BD) analytic techniques. This has penetrated a wide range of industries; BD as a notion has various types and characteristics, and therefore a variety of analytic techniques would be required. The traditional analysis methods are typically unable to analyse spatial-temporal BD. Interpolation is required to approximate the values between the already existing data points, yet since there exist both location and time dimensions, only a multivariate interpolation would be appropriate. Nevertheless, existing software are unable to perform such complex interpolations. To overcome this challenge, this paper presents a layer by layer interpolation approach for spatial-temporal BD. Developing this layered structure provides the opportunity for working with much smaller linear system of equations. Consequently, this structure increases the accuracy and stability of numerical structure of the considered BD interpolation. To construct this layer by layer interpolation, we have used the good properties of Radial Basis Functions (RBFs). The proposed new approach is applied to numerical examples in spatial-temporal big data and the obtained results confirm the high accuracy and low computational cost. Finally, our approach is applied to explore one of the air pollution indices, i.e. daily PM2.5 concentration, based on different stations in the contiguous United States, and it is evaluated by leave-one-out cross validation

    Predicting primary sequence-based protein-protein interactions using a Mercer series representation of nonlinear support vector machine

    Get PDF
    © 2022 The Authors. Published by IEEE. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://ieeexplore.ieee.org/document/9956991The prediction of protein-protein interactions (PPIs) is essential to understand the cellular processes from a medical perspective. Among the various machine learning techniques, kernel-based Support Vector Machine (SVM) has been commonly employed to discriminate between interacting and non-interacting protein pairs. The main drawback of employing the kernel-based SVM to datasets with many features, such as the primary sequence-based protein-protein dataset, is the significant increase in computational time of training stage. This increase in computational time is mainly due to the presence of the kernel in solving the quadratic optimisation problem (QOP) involved in nonlinear SVM. In order to fix this issue, we propose a novel and efficient computational algorithm by approximating the kernel-based SVM using a low-rank truncated Mercer series as well as desired. As a result, the QOP for the approximated kernel-based SVM will be very tractable in the sense that there is a significant reduction in computational time of training and validating stages. We illustrate the novelty of the proposed method by predicting the PPIs of “S. Cerevisiae” where the protein features extracted using the multiscale local descriptor (MLD), and then we compare the predictive performance of the proposed low-rank approximation with the existing methods. Finally, the new method results in significant reduction in computational time for predicting PPIs with almost as accuracy as kernel-based SVM.The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number IF-2020-NBU-412.Published versio

    Copula-based probabilistic assessment of intensity and duration of cold episodes: A case study of Malayer vineyard region

    Get PDF
    Frost, particularly during the spring, is one of the most damaging weather phenomena for vineyards, causing significant economic losses to vineyards around the world each year. The risk of tardive frost damage in vine-yards due to changing climate is considered as an important threat to the sustainable production of grapes. Therefore, the cold monitoring strategies is one of the criteria with significant impacts on the yields and prosperity of horticulture and raisin factories. Frost events can be characterized by duration and severity. This paper investigates the risk and impacts of frost phenomenon in the vineyards by modeling the joint distribution of duration and severity factors and analyzing the influential parameter’s dependency structure using capabilities of copula functions. A novel mathematical framework is developed within this study to understand the risk and uncertainties associate with frost events and the impacts on yields of vineyards by analyzing the non-linear dependency structure using copula functions as an efficient tool. The developed model was successfully vali-dated for the case study of vineyard in Malayer city of Iran. The copula model developed in this study was shown to be a robust tool for predicting the return period of the frost events

    Order acceptance and scheduling problems in two-machine flow shops: new mixed integer programming formulations

    Full text link
    We present two new mixed integer programming formulations for the order acceptance and scheduling problem in two machine flow shops. Solving this optimization problem is challenging because two types of decisions must be made simultaneously: which orders to be accepted for processing and how to schedule them. To speed up the solution procedure, we present several techniques such as preprocessing and valid inequalities. An extensive computational study, using different instances, demonstrates the efficacy of the new formulations in comparison to some previous ones found in the relevant literature

    Optimal variable shape parameters using genetic algorithm for radial basis function approximation

    No full text
    Many radial basis function (RBF) methods contain free shape parameter or parameters that play an important role for the accuracy of the method. In most papers the authors end up choosing free shape parameter by trial and error or some other ad-hoc means. However, using variable shape parameters provides a clear potential for improved accuracy and stability of the RBF method. Already some progress has been reported to select usable variable shape parameters. In this paper, we propose applying the genetic algorithm to determine good variable shape parameters of radial basis functions for the solution of ordinary differential equations. Numerical results show that the proposed algorithm based on the genetic optimization is effective and provides reasonable shape parameters along with acceptable accuracy in linear and nonlinear case compared with other strategies to determine variable shape parameters
    corecore