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Abstract (250) 
 
Inter-subject diversity in sulcal patterns represents a challenge for accurate anatomical boundary- 

matching in atlas-based parcellation of brain MRIs. Non-linear registration and multiple atlases 

improve the performance of atlas-based parcellation and reportedly produce accurate and 

consistent results. However, these reports are limited as they use only 1) volumetric comparison 

of performance, and 2) young healthy brains. It is unclear whether atlas-based parcellation is 

suitable in ageing cohorts because variability in age-related brain atrophy is a major confounding 

factor for automatic methods. We assessed the performance of atlas-based parcellation in an 

ageing population (90 non-demented healthy adults, aged 72.7±0.7yrs) using measures of 

volumetric and spatial concordance, and visual assessment. Volumetric assessment showed that 

both single- and multi-atlas-based methods performed acceptably (Intraclass correlation 

coefficient, ICC:0.74 to 0.76). Spatial overlap measurements showed that both single- (Jaccard 

Index, JI:0.61 to 0.64, Dice Coefficient, DC:0.75 to 0.78) and multi-atlas (JI:0.73, DC:0.84) 

approaches gave good agreement with the manual reference, but the multi-atlas approach offered 

an improvement of spatial overlap (JI:+0.10, DC:+0.06). Visual assessment also showed that 

multi-atlas out-performed single-atlas, and identified an additional post-processing step of CSF 

removal, enhancing concordance (ICC:0.86, JI:0.81, DC:0.89). In conclusion, an atlas-based 

parcellation method performed reasonably well in the ageing population. Parcellation scheme 

performance should be assessed volumetrically, visually and by measures of spatial concordance 

in more varied subjects. Issues caused by brain shape variation, and particularly age-related 

atrophy were partially overcome through targeted visual analysis and implementation of post- 

processing. This suggests that multi-atlas parcellation may be feasible in ageing cohorts. 
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1.   Introduction: 
 
Image segmentation plays an important role in region-based analysis of structural MR 

neuroimaging data, and can be broadly categorised into two types of approach. The first method 

is manual delineation of a particular anatomical structure or the ‘region of interest’ (ROI) drawn 

on the image to be analyzed (Cabezas et al., 2011). This commonly-used approach is the 

reference standard, but it is time consuming because it requires ROIs to be drawn on every scan 

individually and it is also prone to user bias. The second approach is to use automatic 

parcellation methods based on image segmentation algorithms. This approach tends to require 

less user input, fewer person-hours, and is less susceptible to non-systematic bias. Automatic 

approaches can be summarised into four groups, namely atlas-based (Aljabar et al., 2009; 

Ashburner & Friston, 2005; Fischl et al., 2004; Heckemann et al., 2010), supervised learning 

techniques (Moghaddam & Soltanian-Zadeh, 2009), shape and appearance model approaches (K. 

O. Babalola, Cootes et al., 2008; Kelemen et al., 1999) and energy-based techniques (Leventon 

et al., 2000; Yushkevich et al., 2006). Of these, atlas-based methods have been shown to perform 

the best (Kolawole Oluwole Babalola et al., 2009; K. O. Babalola, Patenaude et al., 2008; 

Ginneken et al., 2007; Igual et al., 2011), and have been proposed as the standard paradigm for 

exploiting spatial prior knowledge in brain MR image segmentation (Cabezas et al., 2011). 

 
 
 

The atlas-based segmentation technique uses a standard anatomical atlas (e.g. Talairach or MNI 

atlas) to define the ROI in the atlas space or individual subject’s native space, with the latter 

offering better accuracy due to reduction in partial volume effect errors (Aribisala et al., 2011). A 

significant step in atlas-based methods is the registration of the atlas to each individual’s native 

space which should potentially normalize variations in size and shape between the atlas and the 

individual’s brain. Registration has most commonly used linear transformations (Jenkinson & 
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Smith, 2001). However, both linear transformation and the use of a single atlas based on the brain 

of one individual do not adequately account for inter-subject variability in brain morphology. This 

results in relatively poor anatomical boundary matching. Non-linear registration has been 

demonstrated to improve boundary matching (Ardekani et al., 2005; Avants et al., 2011). Thus, a 

multi-atlas approach based on several brains rather than just one subject has been proposed 

(Heckemann et al., 2010). The multi-atlas approach appears to outperform the single-atlas 

approach (Aljabar et al., 2009; Cabezas et al., 2011; Heckemann et al., 2010; Rohlfing et al., 

2004). 

 
 
 

Segmentation of ageing brains presents a significant challenge to any automatic segmentation 

technique because age-related changes (Cabezas et al., 2011) such as brain atrophy (A. P. A. 

Appelman et al., 2009), skull thickening (Finby & Kraft, 1972; May et al., 2011),  presence of 

white matter lesions (Debette & Markus, 2010) and infarcts (Auke P. A. Appelman et al., 2010) 

increase inter-individual variability [1]. Furthermore, the prefrontal lobe exhibits a particularly 

high degree of variation in sulcal folding patterns between subjects and is also highly susceptible 

to age-related atrophy and white matter lesions, both of which affect the performance of 

automated methods (Raz et al., 2005). Combined with the considerable research attention it has 

received due to its involvement in complex cognition and its association with psychiatric, 

behavioural and neurological disorders (Steele & Lawrie, 2004), the prefrontal lobe is a highly 

relevant and challenging test-bed for shape-based automatic segmentation methods. 

 
 
 

The performance of atlas-based techniques has been compared with manual methods in other 

studies (Desikan et al., 2006; Destrieux et al., 2010; Igual et al., 2011), but most of these have 
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used small sample sizes, typically 10 to 40 subjects (Cabezas et al., 2011), and analyses have 

been restricted to data acquired from children (Igual et al., 2011) or young adults (Desikan et al., 

2006; Destrieux et al., 2010; Igual et al., 2011) where age-related changes are not observable. In 

addition, measurements of comparison have tended to use either volumetric or spatial 

concordance, and rarely visual inspection. Although Desikan et al. (Desikan et al., 2006) 

compared atlas-based methods with manual segmentation in an ageing population, their sample 

of 10 older adults is unlikely to be representative of the full range of premorbid and age-related 

structural differences, thus limiting inferential power. In addition, their comparison measure was 

limited to ICC consistency. To the best of our knowledge, no study has investigated the 

performance of atlas-based image segmentation techniques on the frontal lobes in a large sample 

of well-characterised older adults, using rigorous and multi-faceted comparison measures. 

 
 
 

Here we compared the performance of single- and multi-atlas-based parcellation methods with 

manual segmentation using brain MRI data acquired from healthy older adults with a narrow age 

range (72.7 ± 0.7 years). The comparative analysis combined visual assessment, volumetric 

agreement using Bland-Altman and intraclass correlation analysis with measures of spatial 

concordance. We also compared the choice of atlas selection for both single- and multi-atlas 

approaches. Selection of atlases is an important step in multi-atlas-based techniques as the final 

outcome is significantly influenced by the choice of atlases, the number of atlases and the 

method for combining the atlases (Aljabar et al., 2009; Ginneken et al., 2007; Heckemann et al., 
 
2010; Igual et al., 2011). These have been investigated (Aljabar et al., 2009; Heckemann et al., 
 
2010) and the use of image similarity metrics (e.g. normalised mutual information or correlation 

ratio) has been proposed as the most reliable atlas selection method. In addition, an optimum 
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number of atlases has been suggested and classifier fusion based on majority vote rule has been 

shown to be an accurate atlas-combination method (Aljabar et al., 2009). However, there have 

been no demonstrations of how these perform when applied to the ageing brain. 
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2.   Methods 
 
2.1 Subjects 
 
Study data were selected from 700 members of the Lothian Birth Cohort 1936 (LBC1936; 

(Deary et al., 2012; Deary et al., 2007)). The LBC1936 are surviving participants of the Scottish 

Mental Survey of 1947 (Deary et al., 2007; Scottish Council for Research in Education, 1949) 

living in the Lothian (Edinburgh) area of Scotland. At mean age 70 years they undertook a 

battery of tests including detailed cognitive and medical assessments (Deary et al., 2012; Deary 

et al., 2007). Three years later, as many of these subjects as possible underwent repeat cognitive 

and medical tests, and brain MRI (Wardlaw et al., 2011). Written informed consent was obtained 

from all participants under protocols approved by the Lothian (REC 07/MRE00/58) and Scottish 

Multicentre (MREC/01/0/56) Research Ethics Committee. Ninety males were selected based on 

the following criteria: not taking corticosterone medication or anti-depressants, no pathological 

MRI findings as identified by a consultant neuroradiologist (JMW), no severe cognitive 

impairment (Mini Mental Score Examination score of 24 or above) and non-depressed (Hospital 

Anxiety and Depression Scale – Depression score below 11). 

 
 
 

2.2 Brain MRI Acquisition 
 
Subjects were imaged with a GE Signa Horizon HDxt 1.5T clinical scanner (General Electric, 

Milwaukee, WI, USA) using a self-shielding gradient set with maximum gradient strength of 33 

mT/m, and an 8-channel phased-array head coil. The imaging protocol included a coronal T1- 

weighted (resolution 1 x 1 x 1.3 mm thickness), axial T2*-weighted (1 x 1 x 2 mm thickness) and 

axial FLAIR (Fluid Attenuated Inversion Recovery, 1 x 1 x 4 mm thickness) whole brain scans; 

sequence details described in (Wardlaw et al., 2011). 
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2.3 Manual Image Processing 
 
Manual segmentation was performed using Analyze Software 8.1 (Mayo Clinic, Rochester, MN) 

(Mayo, 2008). T1-weighted volumes were transformed so that the AC-PC line was horizontal at 

the midline in sagittal orientation, and the central fissure was vertical in both coronal and axial 

planes. Thresholding was then applied in order to remove dark grey elements such as meningeal 

tissue and signal noise from the image (Ferguson & Wardlaw), which resulted in clearer grey 

matter-CSF boundaries. 

 
 
 

The frontal lobe was then manually delineated on coronal slices of the transformed and 

thresholded image. This was achieved by first drawing a straight line between the depth of each 

adjacent major sulcus (superior and inferior frontal, lateral orbital, cingulate or paracingulate 

sulci) using a pen-driven cursor and tablet (Wacom Intuos 4, Wacom Co. Ltd., Saitama, Japan) 

to demarcate the internal extent of all major frontal gyri. An intensity-guided flood fill was then 

applied to enable automatic detection of the grey matter-CSF boundaries. The posterior boundary 

of the superior frontal lobe was identified as the slice immediately anterior to the appearance of 

the pre-central gyrus (Kates et al., 2002; Figure 1). The selection of this boundary allows the 

simple and reliable identification of the frontal areas excluding pre-motor cortex using a 

common landmark that is easy to identify. The orbital aspect of the frontal lobe was identified 

using a coronal plane at the most posterior appearance of the lateral orbital sulcus, which allowed 

differentiation of the orbitofrontal cortex from insular cortex. Asymmetry of these boundaries 

between hemispheres of each individual was preserved. This process produced a library of 90 

atlases with the anatomical scans. 
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2.4 Automated Image Processing 
 
The brain was extracted from the surrounding tissue using a validated multispectral image 

processing tool, MCMxxxVI (Hernández et al., 2012; Hernandez et al., 2010). This semi- 

automatic segmentation tool fuses pairs of MRI sequences (e.g. T2*-weighted and FLAIR) in the 

red-green colour space to enhance signal differences between tissues, hence improving 

computational differentiation of signal differences and increasing accuracy of extraction of 

specific anatomical structure or ROI. T2*-weighted and FLAIR volumes were fused to extract 

the brain as they provide good differentiation between brain-CSF and the inner skull table. After 
 
image fusion, the object extractor tool of Analyze 8.1 software (Mayo, 2008) was used to extract 

the brain and the final result was visually inspected and manually edited to correct for any 

misclassification. 

 
 
 

2.4.1 Segmentation using a Single Template 
 
For single-atlas segmentation, we used atlases derived from four different representative brains 

in order to investigate how the choice of atlas selection affects performance. The first three were 

selected from the 90 subjects as the most representative in terms of intracranial volume, total 

brain tissue volume and frontal lobe volume. The fourth was a standard atlas developed from a 

right handed male young adult, available in MRIcro (Rorden & Brett, 2000), included to compare 

the results of segmenting ageing brains using an atlas developed from a young adult with those 

achieved by applying an age-matched atlas. The frontal lobe volumes were computed from the 

manually segmented images described in Section 2.3. 
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Each of the four representative brains was transformed to individual subject’s space using 

Automatic Registration Toolbox (ART, (Ardekani et al., 2005)), which was selected as it has 

previously been demonstrated as one of the most robust nonlinear image registration algorithms 

(Klein et al., 2009). The registration process was in two stages. Firstly, the T1-weighted volume 

from which the representative atlas was generated was registered to the T1-weighted volume of 

each subject and the computed transformation matrix applied to the atlas using the nearest 

neighbour interpolation to preserve the binary nature of the atlas. Secondly, the atlas was applied 

to the T1-weighted volume of each subject to extract the subject-specific prefrontal lobe. 

 

 
 

2.4.2 Segmentation using Multiple Atlases 
 
Multi-atlas segmentation consists of template selection, label propagation, label fusion and ROI 

definition (Leung et al., 2011). First we used FSL (FMRIB Software Library, University of 

Oxford, UK) image registration tool (FLIRT (Jenkinson & Smith, 2001)) to register all our 

library scans to each subject in a jack-knifing method (Efron & Tibshirani, 1993) and computed 

the similarity between the source and the target image. Using this approach, each of the 90 

subjects in our library became the target image and the remaining 89 were the source images. We 

used two image similarity metrics: the normalised cross correlation (Collignon et al., 1995), and 

normalised mutual information (Studholme et al., 1999) in order to investigate their accuracy in 

ageing population parcellation. For each subject, the library atlases were ranked based on the 

similarity metrics. The best-matched 20 atlases were selected as previously proposed (Aljabar et 

al., 2009), and were then registered to the target volume using ART (Ardekani et al., 2005), and 
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combined using vote-rule-based decision fusion at every voxel (Aljabar et al., 2009). The 
 
resulting atlas was used to extract the participant’s prefrontal region. 

 

 
 
 
 
 
 
 
 
 

2.4.3 Comparative Analysis of Methods 
 
The comparison between atlas-based and manual segmentation was conducted in three stages. 

Firstly, intra-class correlation coefficients (ICCs) (Shrout & Fleiss, 1979) and Bland-Altman 

metrics (Bland & Altman, 1986) were calculated to examine the volumetric agreement between 

approaches. Secondly, as volumetric agreement does not give information about spatial 

agreement, we assessed spatial concordance using the Jaccard Index (JI) (Gee et al., 1993; 

Jaccard, 1912) and Dice Coefficient (DC) (Zijdenbos et al., 1994). The JI is defined as the ratio 

of the intersection of two images to their union, while the DC is the ratio of the intersection of 

two images to their mean value, where A and M represent automatically and manually generated 

segmentations respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Both measures have values ranging from 0 to 1 representing complete disjoint and complete 

overlap respectively. Paired t-tests were used to compare the spatial agreement between methods. 
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Finally, results were visually assessed by inspecting consecutive sections displayed together on 

the same screen and three-dimensional rendering. Volumes which exhibited particularly high or 

low measures of spatial concordance were specially inspected in order to identify reasons for 

extreme values. Visual inspection typically showed that initial single- and multi-atlas outputs 

misclassified CSF voxels as brain matter, and that the output masks did not map well onto the 

gyral patterning of the target brain. In order to rectify this, the dark grey elements such as 

meningeal tissue and signal noise were removed from the T1-weighted volumes using the 

threshold value identified during manual segmentation. The masks generated from this process 

were then applied to the results from single- and multi-atlas parcellation to produce CSF free 

prefrontal lobes. 

 
 
 

3.   Results 
 
Table 1 presents the descriptive statistics for the study participants. Two subjects were excluded 

from the analysis because of registration failure, resulting in a sample of n=88 for analysis using 

the multi-atlas method. For the single atlas-based method, the agreement metrics for each of the 

study-based representative brains were excluded from the analysis, reducing the sample size to 

87. Further registration failure after applying the young adult single-atlas method resulted in a 

cohort of n=77 for analysis using this approach. 

 
 
 

3.1 Reproducibility of Manual Segmentation 
 
In order to measure intra-rater reliability, 10 of the study cohort were randomly selected and 

segmented two weeks apart by the same rater (SRC) using the same protocol described in Section 

2.3. The resultant similarity measures (ICC = 0.99, Bland-Altman mean = -0.07 %, 95% 
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limits from 2.59 to -2.72 %; JI = 0.81, DC = 0.87) suggest that the manual method is highly 

reproducible. 

 
 
 

3.2 Single-Atlas 
 
All four representative single-atlases had comparably good spatial agreement with the manual 

method (range: JI = 0.61 to 0.64, DC =0.75 to 0.78), but there was significant divergence with 

respect to volumetric measures (Table 2, Figure 3). The three atlases selected from the target 

cohort gave acceptable volumetric agreement (ICCs > 0.74) with comparably wide Bland- 

Altman 95% confidence intervals (26.92 to 28.83 %, Table 2, Figure 2) and no apparent over- or 

under-estimation. However, where the young adult brain was used, it resulted in a very low ICC 

(0.31), systematic overestimation of frontal lobe volume (Bland-Altman mean = -18.70 %) and 

the widest Bland-Altman confidence interval spans of all approaches (34 %). 

 
 
 

3.3 Multi-Atlas 
 
Both multi-atlas methods (atlases selected using normalised mutual information and normalised 

correlation coefficients) initially gave highly similar volumetric (ICCs = 0.76) and spatial 

agreement (JI = 0.73 ± 0.02, DC = 0.84 ± 0.02) with the manual segmentation (Table 2, Figure 

3). Although the volumetric agreement did not appear to improve with the use of multi- 

compared to single-atlases, the spatial agreement was significantly better, with JI improving by 

0.09 and DC by 0.06; differences computed using atlases selected based on total brain tissue 

volume and normalised mutual information (paired t-test, p < 0.001). Removal of misclassified 

CSF voxels in a post-processing step identified via visual assessment further improved the 

performance of both multi-atlas methods (Figure 2, Table 3). Specifically, ICC agreement 
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improved by 0.11, and there was a reduction in Bland-Altman confidence intervals of 6.94 

(normalised correlation) and 8.97 % (mutual information). Furthermore, spatial overlap was 

significantly improved for both the JI (0.08) and DC (0.05) (paired t-test, p < 0.001). The 

distribution of both measures (Figure 3) also showed the multi-atlas based method performed 

better than the single-atlas method. 

 
 
 

3.3.3 Visual Assessment 
 
Preliminary visual assessment confirmed that boundary matching and grey matter-CSF boundaries 

were more accurately represented using the multi-atlas approach (the manual, single- and multi-

atlas mask comparison is illustrated in Figure 4). The output masks from the single- atlas method 

did not map well onto the gyral patterning of the target brain. For the multi-atlas method, prior to 

the removal of CSF, estimation errors were primarily at medial and dorsolateral extents, and the 

posterior lobar boundary was often imprecise. This was particularly apparent amongst individuals 

who exhibited a higher degree of atrophy, although brain shape that deviates significantly from 

the atlas may also be a confounding factor for non-linear registration. However, introducing the 

post-processing step of CSF removal showed a marked improvement 

in the concordance between multi-atlas and manual methods. Following this step, variability 

between automated mask and reference was mainly confined to the posterior boundary, with 

medial and dorsal over-estimation showing improvement (Figure 4). 
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4.   Discussion 
 
We have presented an investigation of the performance of atlas-based brain parcellation 

techniques in an ageing population. As an exemplar, we parcellated the prefrontal lobe using both 

single- and multi-atlas-based approaches and compared their performance with that of manual 

parcellation. We also investigated the choice of atlas selection and their effects on parcellation 

accuracy. We found that, whereas single-atlas measures were inconsistent in terms of volumetric 

and spatial indices of comparison with the reference standard, both methods of multi-atlas 

parcellation gave consistently good results. Multi-atlas performed better than single- atlas on the 

majority of similarity measures, particularly those that consider spatial concordance. We also 

found that the additional post-processing step of CSF removal improved the performance of the 

atlas-based methods. The spatial agreement measures show that the performance of multi-atlas 

methods in this ageing population compare very well with the 

implementation in young adults (Aljabar et al., 2009; Heckemann et al., 2010) and with the state- 

of-the-art segmentation techniques (e.g. (Fischl et al., 2004)) applied to young adults; therefore 

the current approach shows promise. 

 
 
 

Our investigation on the choice of atlas selection revealed that the targeted selection of a study- 

based atlas for single-atlas methods of segmentation is of methodological importance. Using the 

atlas of a young healthy male resulted in much poorer performance than did the use of a study- 

based, older adult atlas. This supports an earlier finding (Aljabar et al., 2009) that application of 

an age-based atlas improves accuracy. Basing the single-atlas selection on average intracranial 

volume, brain tissue volume or frontal lobe size all seem to confer similar improvements on 

overall output but the selection based on the total brain tissue volume and frontal lobe volume 
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gave the best performance. Both the multi-atlas methods showed an improvement in the spatial 

measures of similarity with the reference manual segmentation compared to the single-atlas 

approach. The multi-atlas method should now be tested in a much larger and more varied 

population. The current participants were comparatively healthy and cannot fully represent the 

extent of normal or pathological variation seen with advancing age. Any such approach should 

be used with caution until wider knowledge of the limitations is available. 

 
 
 

On a further methodological note, we emphasise the importance of rigorous comparisons 

between automated and reference outputs. It is clear from the inconsistencies across 

measurement modalities that agreements in volume do not necessarily equate to accuracy; here 

the spatial improvement conferred by multi-atlas methods, as identified by both computational 

and visual assessment, is not reflected in the volumetric comparison. Furthermore, visual 

assessment is a crucial tool in the identification of errors and potential improvements; the 

potential to make significant improvements to the most promising methods by removing 

misclassified CSF voxels was only identified through visual comparison of the outputs. This 

implies that the performance of any automatic parcellation technique should not only be 

measured using ICC but also with spatial concordance and visual assessment by a trained rater. 

 
 
 

Nevertheless, even when we used robust criteria for atlas selection, chose the best registration 

method and a large ROI, variance in brain morphology and particularly the effects of age-related 

atrophy continue to present challenges to purely automated methods. The implementation of 

post-processing largely rectified these discrepancies, although issues with posterior boundary 

positioning remained. An alternative approach is to combine automated methods with manual 
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editing to correct discrepancies. This hybrid approach might confer advantages over automated 

methods in terms of accuracy, and at the same time reduce the amount of researcher-hours that 

are required for a purely manual method. Hence, future use of automatic parcellation methods 

could usefully be followed by visual assessment, cogent post-processing strategies and manual 

editing. 

 
 
 

In addition to our robust assessments of performance, this study benefits from a large sample and 

narrow age range, making this the largest study to have investigated atlas-based parcellation 

performance in an ageing population. We also used a state-of-the-art non-linear registration tool 

and a well-validated semi-automatic tool for brain extraction. The present study is limited in that 

only healthy older male participants were used. We therefore do not offer an assessment of 

performance for healthy ageing female brains, or age-related degenerative disorders. There is 

increased skull-thickening in post-menopausal women, and this could affect the performance of 

the atlas-based method. Likewise, significantly higher degrees of atrophy in pathological ageing 

are likely to present increased, and possibly novel, challenges to the present method. Further work 

could usefully test the effects of skull-thickening on automated parcellation and amongst subjects 

with significantly more brain atrophy than healthy cohorts, such as dementia. Moreover, this 

method has only been applied to a large cortical region that is predominantly bound by CSF. 

Future studies will assess performance on other brain regions, particularly sub-cortical areas that 

may not benefit from the post-processing step used here. 

 
 
 

In conclusion, atlas-based parcellation methods performed reasonably well in our generally 

healthy ageing population, with the multi-atlas method performed better than the single-atlas, 
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although this was only apparent using visual inspection and measures of spatial concordance. The 

performance of any parcellation scheme should be assessed by a robust and multi-faceted series 

of measures. However, brain shape and particularly the effects of age-related atrophy still 

challenge the performance of this, and other, computational methods. Visual assessment also 

allowed a targeted post-processing method to be identified and implemented, further augmenting 

the agreement of multi-atlas parcellation across all measures. We suggest that a high degree of 

volumetric and spatial concordance can be achieved when this method is combined with minimal 

manual editing, and may be a promising method for lobar parcellation in large ageing cohorts. 
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Figure Captions 
 

 
 

Figure 1: Manual definition of the ROI using coronal slices (left to right: posterior to anterior).. 

Top row shows the identification of the most posterior coronal slice before the appearance of the 

precentral gyrus (PrCG; after Kates et al., 2002; PrCG indicated with arrows). Bottom row 

shows identification of the most posterior appearance of the lateral orbital sulcus (LOS; indicated 

with arrows). Middle image shows a 3D rendering of the prefrontal ROI in red. Dotted line 

indicates the anterior-most extent of the PrCG (left) and the most posterior coronal appearance of 

the LOS (right). 

 
 

Figure 2: Bland-Altman analysis showing the variation of % mean difference against mean 

values between automated single-atlas and manual segmentation. Tails denote upper and lower 

confidence limits. Single-Atlas: Young, ICV, TBV and lobe denote the representative brains 

selected based on young adult brain, ICV, total brain tissue volume and frontal lobe volume 

respectively. Multi-atlas: corr, mutual, corr CSF and mutual CSF denote selections of atlases 

using normalised correlation coefficient, normalised mutual information, normalised correlation 

coefficient followed by CSF removal and normalised mutual information followed by CSF 

removal respectively. 

 
 

Figure 3: Boxplots of measures of agreements between manual and automatic atlas-based 

segmentation methods. Single-Atlas: Young, ICV, TBV and lobe denote the representative brains 

selected based on young adult brain, ICV, total brain tissue volume and frontal lobe volume 

respectively. Multi-atlas: corr, mutual, corr CSF and mutual CSF denote selections of atlases 

using normalised correlation coefficient, normalised mutual information, normalised correlation 

coefficient followed by CSF removal and normalised mutual information followed by CSF 

removal respectively. 

 
 

Figure 4: Sagittal (top row) and coronal (bottom row) planes for comparison of parcellation 

method on a representative brain from the cohort. From left to right, manual, single atlas, multi- 

atlas, multi-atlas after post-processing to remove CSF. For single atlas, local patterns of 

gyrification were not well-matched. For multi-atlas, prior to CSF removal, voxels in lateral 
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(orange arrows) and medial aspects (orange box) were classified as brain tissue. Broken white 

lines indicate posterior boundary. Single-atlas method shown was when representative brain was 

selected based on the total brain tissue volume. Multi-atlas method shown was when normalised 

correlation coefficient was used to select atlases. 
 

 
 
 
 
 
 
 
 
 
 
 

Table 1 Descriptive Statistics 
 

 
 

Mean SD Range 
 

 
 
Age at MRI (yrs) 

 
73.30 

 
0.37 72.41-74.22 

 

MMSE 
 

28.54 
 

1.52 24-30 
 

HADS-A 
 

3.97 
 

2.71 0-10 
 

HADS-D 
 

2.74 
 

2.33 0-10 

 

 
MMSE = Mini Mental State Exam (max=30), HADS-A = Hospital Anxiety and Depression 
Scale – Anxiety Subscale (max=21), HADS-D = Hospital Anxiety and Depression Scale – 
Depression Subscale (max=21). 
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Table 2: Volumetric and spatial agreement measures between manual and automatic parcellation. 
 

Volumetric Comparison 
ICC Bland-Altman 

Mean (%) Confidence Limits (%) 
Manual Reference Standard 0.99 0.07  2.59 to -2.72 

Atlas selected based on ICV (N=87) 0.76 2.61 16.07 to -10.85 
Single-atlas 

 

 
 
 
 
 

Multi-atlas 

Atlas selected based on TBV (N=87) 0.76 -1.23 13.17 to -15.66 
Atlas selected based on frontal lobe 

volume (N=87) 0.74 2.56 16.73 to -11.62 
Standard Atlas (N=77) 0.31 -18.70 1.74 to -35.65 

Atlases selected based on correlation 
coefficient (N=88) 0.75 0.65 15.34 to -14.04 

Atlases selected based on mutual 
information (N=88) 0.75 1.41 15.49 to -12.67 

Spatial Comparison 
Frontal lobe 

Volume Jaccard Index Dice Coefficient 
Manual Reference Standard 193888 ± 23250 0.81±0.24 0.87±0.22 

Atlas selected based on ICV (N=87) 188330 ± 17361 0.61 ± 0.02 0.75 ± 0.02 
Single-atlas 

 

 
 
 
 
 

Multi-atlas 

Atlas selected based on TBV (N=87) 195680 ± 18208 0.64 ± 0.02 0.78 ± 0.02 
Atlas selected based on frontal lobe 

volume (N=87) 188388 ± 17147 0.64 ± 0.02 0.78 ± 0.01 
Young Adult Standard Atlas (N=77) 235242 ± 27553 0.62 ± 0.06 0.76 ± 0.05 
Atlases selected based on correlation 

coefficient (N=88) 211559 ± 19335 0.73 ± 0.03 0.84 ± 0.02 
Atlases selected based on mutual 

information (N=88) 209965 ± 18596 0.73 ± 0.03 0.84 ± 0.02 
 

 
 

ICV = intracranial volume 
 

TBV = total brain tissue volume 
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Table 3: Change in volumetric and spatial agreement measures for multi-atlas methods before 
and after CSF post-processing. 
 

Volumetric Comparison 
ICC Bland-Altman 
ICC Mean (%) Confidence Limits (%) 

 
Initial 

 
 
 

CSF 
Removed 

Atlases selected based on correlation 
coefficient (N=88) 0.75 0.65 15.34 to -14.04 

Atlases selected based on mutual 
information (N=88) 0.75 1.41 15.49 to -12.67 

Atlases selected based on correlation 
coefficient (N=88) 0.86 2.68 12.88 to -7.53 

Atlases selected based on mutual 
information (N=88) 0.86 2.40 13.01 to -8.21 

Spatial Comparison 
Volume Jaccard Index Dice Coefficient 

 
Initial 

 
 
 

CSF 
Removed 

Atlases selected based on correlation 
coefficient (N=88) 211559 ± 19335 0.73 ± 0.03 0.84 ± 0.02 

Atlases selected based on mutual 
information (N=88) 209965 ± 18596 0.73 ± 0.03 0.84 ± 0.02 

Atlases selected based on correlation 
coefficient (N=88) 189010 ± 19846 0.81 ± 0.03 0.89 ± 0.02 

Atlases selected based on mutual 
information (N=88) 188129 ± 19334 0.81 ± 0.03 0.89 ± 0.02 



27

Atlas-Based vs. Manual Prefromal Parcellation Aribisala, Cox et al. 

 

 

 

 
 

 
 

 
 

Fjgure 1 



28

Atlas-Based vs. Manual Prefrontal Parcellation Aribisala, Cox et al. 

 

%
 M

e
an

 D
if
f.
 b
et
w
e
e
n
 e
ac
h
 

m
et
h
o
d
 a
n
d
 m

an
u
al
 m
et
h
o
d
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Young   ICV  TBV  lobe   corr   mutual   Corr 
CSF 

Mutual 
CSF 

 

 

Single‐Atlas  Multi‐Atlas  Multi‐Atlas 
post‐proc. 

 

Figure 2 



29

Atlas-Based vs. Manual Prefrontal Parcellation Aribisala, Cox et al. 

 

Ja
cc
ar
d
 I
n
d
ex

D
ic
e
 C
o
ef
fi
ci
e
n
t  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Young   ICV  TBV  lobe  corr    mutual  Corr  Mutual 

        CSF CSF 

 

Single‐Atlas  Multi‐Atlas  Multi‐Atlas 
post‐proc. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Young   ICV  TBV  lobe   corr   mutual   Corr 

CSF 

Mutual 

CSF 
 

Single‐Atlas  Multi‐Atlas  Multi‐Atlas 

Figure 3 post‐proc. 



30

Atlas-Based vs. Manual Prefrontal Parcellation Aribisala, Cox et al. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Manual  Single‐Atlas  Multi‐Atlas    Multi‐Atlas 
post‐processing 

 
 
 

Figure 4 


