1,021 research outputs found

    Association schemes related to universally optimal configurations, Kerdock codes and extremal Euclidean line-sets

    Full text link
    H. Cohn et. al. proposed an association scheme of 64 points in R^{14} which is conjectured to be a universally optimal code. We show that this scheme has a generalization in terms of Kerdock codes, as well as in terms of maximal real mutually unbiased bases. These schemes also related to extremal line-sets in Euclidean spaces and Barnes-Wall lattices. D. de Caen and E. R. van Dam constructed two infinite series of formally dual 3-class association schemes. We explain this formal duality by constructing two dual abelian schemes related to quaternary linear Kerdock and Preparata codes.Comment: 16 page

    Optimality and uniqueness of the Leech lattice among lattices

    Full text link
    We prove that the Leech lattice is the unique densest lattice in R^24. The proof combines human reasoning with computer verification of the properties of certain explicit polynomials. We furthermore prove that no sphere packing in R^24 can exceed the Leech lattice's density by a factor of more than 1+1.65*10^(-30), and we give a new proof that E_8 is the unique densest lattice in R^8.Comment: 39 page

    New proofs of the Assmus-Mattson theorem based on the Terwilliger algebra

    Full text link
    We use the Terwilliger algebra to provide a new approach to the Assmus-Mattson theorem. This approach also includes another proof of the minimum distance bound shown by Martin as well as its dual.Comment: 15 page

    Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

    Get PDF
    We apply the semidefinite programming approach developed in arxiv:math.MG/0608426 to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the SDP framework to get analytic bounds.Comment: 15 pages, (v2) referee comments and suggestions incorporate

    Note on cubature formulae and designs obtained from group orbits

    Full text link
    In 1960, Sobolev proved that for a finite reflection group G, a G-invariant cubature formula is of degree t if and only if it is exact for all G-invariant polynomials of degree at most t. In this paper, we find some observations on invariant cubature formulas and Euclidean designs in connection with the Sobolev theorem. First, we give an alternative proof of theorems by Xu (1998) on necessary and sufficient conditions for the existence of cubature formulas with some strong symmetry. The new proof is shorter and simpler compared to the original one by Xu, and moreover gives a general interpretation of the analytically-written conditions of Xu's theorems. Second, we extend a theorem by Neumaier and Seidel (1988) on Euclidean designs to invariant Euclidean designs, and thereby classify tight Euclidean designs obtained from unions of the orbits of the corner vectors. This result generalizes a theorem of Bajnok (2007) which classifies tight Euclidean designs invariant under the Weyl group of type B to other finite reflection groups.Comment: 18 pages, no figur

    Unitary designs and codes

    Full text link
    A unitary design is a collection of unitary matrices that approximate the entire unitary group, much like a spherical design approximates the entire unit sphere. In this paper, we use irreducible representations of the unitary group to find a general lower bound on the size of a unitary t-design in U(d), for any d and t. We also introduce the notion of a unitary code - a subset of U(d) in which the trace inner product of any pair of matrices is restricted to only a small number of distinct values - and give an upper bound for the size of a code of degree s in U(d) for any d and s. These bounds can be strengthened when the particular inner product values that occur in the code or design are known. Finally, we describe some constructions of designs: we give an upper bound on the size of the smallest weighted unitary t-design in U(d), and we catalogue some t-designs that arise from finite groups.Comment: 25 pages, no figure

    Bounds on sets with few distances

    Get PDF
    We derive a new estimate of the size of finite sets of points in metric spaces with few distances. The following applications are considered: (1) we improve the Ray-Chaudhuri--Wilson bound of the size of uniform intersecting families of subsets; (2) we refine the bound of Delsarte-Goethals-Seidel on the maximum size of spherical sets with few distances; (3) we prove a new bound on codes with few distances in the Hamming space, improving an earlier result of Delsarte. We also find the size of maximal binary codes and maximal constant-weight codes of small length with 2 and 3 distances.Comment: 11 page

    Inversion of Toeplitz operators, Levinson equations, and Gohberg-Krein factorization—A simple and unified approach for the rational case

    Get PDF
    AbstractThe problem of the inversion of the Toeplitz operator TΦ, associated with the operator-valued function Φ defined on the unit circle, is known to involve the associated Levinson system of equations and the Gohberg-Krein factorization of Φ. A simplified and self-contained approach, making clear the connections between these three problems, is presented in the case where Φ is matrix-valued and rational. The key idea consists in looking at the Levinson system of equations associated with Φ−1(z−1), rather than that associated with Φ(z). As a consequence, a new invertibility criterion for Toeplitz operators with rational matrix-valued symbols is derived

    Szego asymptotics for matrix-valued measures with countably many bound states

    Get PDF
    Let μ\mu be a matrix-valued measure with the essential spectrum a single interval and countably many point masses outside of it. Under the assumption that the absolutely continuous part of μ\mu satisfies Szego's condition and the point masses satisfy a Blaschke-type condition, we obtain the asymptotic behavior of the orthonormal polynomials on and off the support of the measure. The result generalizes the scalar analogue of Peherstorfer-Yuditskii and the matrix-valued result of Aptekarev-Nikishin, which handles only a finite number of mass points

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page
    corecore