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The problem of the inversion of the T’oeplitz operator r,. associated with the 

operator-valued function 0 defined on the unit circle, is known to involve the 

associated Levinson system of equations and the Gohberg-Krein factorization of 

0. A simplified and self-contained approach. making clear the connections betireen 

these three problems. is presented in the case nhere @ is matrix-valued and 

rational. The key idea consists in looking at the Levinson system of equations 

associated with @ ‘(2 ~’ ). rather than that associated with @(z j. As a consequence. 

a new invertibility criterion for Toeplitz operators with rational matrix-Lalued 

symbols is derived. 

1. INTRODUCTION 

Let Li,, and L:x",, be the classical Lebesgue spaces of functions from the 
unit circle into the space of n x n complex matrices [I]. Let Hf,. n and H,: ,1 
be the corresponding Hardy spaces [2] of functions with vanishing Fourier 
coefficients of negative index. Observe that, for a rational function. it is 
equivalent to say that it is in Hi, n, in H,",,,. or that it is analytic in the 
closed unit disk. Throughout the paper, unless stated otherwise, capital 
Greek letters will denote functions in Li *n. and capital Latin letters will 
denote functions in Hf * ,*. A capital letter with an integer subscript denotes 
the corresponding Fourier coefficient. 15 y ,, (hi,,,) denotes the set of square 
summable functions from Z(N) into the set of II x II matrices. In the sequel. 
we shall not make explicit distinction between, say, (Rk : k E NJ E hz x n and 
the function R(e”) = rFEO R,dke; this is allowed by a well-known 
isomorphism between the spaces hi .~ n and Hi ,, ,, . 

Let Q(z) be a discrete, rational n x n matrix without poles on the unit 
circle and with Fourier series 

+ % 
Q(z) = \‘ @,z! 

kiSr 
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The Toeplitz operator T, associated with CD is defined by its semi-infinite 
matrix representation 

The Levinson system of equations associated with @ is defined by 

wM,* (I, = (lb) 

where (S,: kEN}Eh~,,and (M,:kEN}Eh~,,aretheunknownquan- 
tities. If TO is invertible, this system of equations obviously admits a 
(unique) solution; it turns out that the converse is also true. We consider in 
this paper the Levinson system of equations as a first step towards another 
related problem-the ability to factor Q(z) as N(z-‘) T(z), where both N(z) 
and T(z) are n x n matrices, invertible, and lying together with their inverses 
in HF’,,. Observe that T(z) and T-‘(z) having vanishing Fourier coefficients 
of negative index require TO to be nonsingular. Hence, for notational reasons 
that will become clear later, we prefer to rewrite the factorization of a(z) in 
the normalized form 

@(z)=N(z-‘) T;‘T(z), 

N, N-‘, T, T-’ E H;x,. 

Pa) 

(2b) 

The linkage between the inversion problem and the factorization problem 
seems to have been shown for the first time by Gohberg and Krein in a 
famous series of papers [3-51. We shall hence refer to (2) as the 
(normalized) Gohberg-Krein factorization of @. The ideas of Gohberg and 
Krein have been subsequently developed in several places; see, for example, 
16-171. Systems of equations of the Levinson type have also been extensively 
studied; see, for example, [ 18-20). These lists of references do not claim to 
be exhaustive; they merely provide important contributions close to our point 
of view. 
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In this paper, we consider the inversion of T* and the factorization of @ 
as two different facets of the same problem, with the Levinson system of 
equations somewhere half-way between the inversion problem and the 
factorization problem. The aim of the paper is to set up a simplified and self- 
contained approach to this triple problem-namely. the inversion of T,, the 
associated Levinson system of equations, and the factorization of @-for the 
special case where @ is matrix-valued and rational. The approach avoids 
hard analysis as much as possible by trying to fully exploit the rationality of 
@. The key idea of the paper consists of looking at the Levinson system 
associated with @ - ‘(z ‘). rather than that associated with Q(z). This idea 
was successfully exploited by Prabhakar Murthy 12 I ] and Delsarte et 
al. [22] to work out a simple approach to the spectral factorization problem. 
Here. somehow. we extend this idea to the more general problem of the 
Gohberg-Krein factorization. This approach leads to a new invertibility 
criterion for Toeplitz operators with rational symbols. This criterion takes 
the form of two finite systems of linear equations to be solvable and is 
believed to be more transparent than that of Pattanayak 1141. 

The importance of Toeplitz operators is not to be proved; they have 
become increasingly important in systems and engineering. Toeplitz 
operators naturally emerge from inifinite systems of convolution equations 
13. 25 I: also, the spectral theory of the linear-quadratic optimal control 
problem 123, 241 relies almost completely on Toeplitz operators. All of these 
things are the background of this paper. 

2. PRELIMINARIES 

Let Q(z) be an II x II discrete, rational matrix. For the problem of the 
inversion of T* to make some sense, some restrictions on the pole/zero 
configurations of Q(z) are needed. 

PROPOSITION 1. Let a(z) be an n x n discrete, rational matrix. Then T, 
is a bounded operator if and only if @ has no poles on the unit circle. 
Moreover, for T, to be invertible it is necessary that @ hare no zeros on the 
unit circle. 

ProoJ These are direct consequences of known and easily proved results: 
see, for example. the monograph of Douglas [ 13. Introduction and 
Corollary 1.4). 

Since our goal is not to handle unbounded operators, we shall thus 
assume in the sequel that Q(z) has no poles on the unit circle. Also, most of 
the time, it will be assumed that G(z) is devoid of zeros on the unit circle. 
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The fact that a(z) has no poles on the unit circle allows us to eliminate all 
poles by easy manipulation and to come up with a trigonometric polynomial. 

LEMMA 1. Let G(z) be an n x n rational matrix without poles on the 
unit circle. Then there exist polynomial factors J(z) and P(z), enjoying the 
properties 

J,J-‘,P,P-lEH:Xn, @a) 

that reduce Q(z) to a trigonometric polynomial 

J(z -1) Q(z) P(z) = Z(z) = 4 
k>ya 

S,zk. (3b) 

Moreover, T, is invertible if and only if T, is. Furthermore, the Levinson 
system associated with @ has a solution if and only if the Levinson system 
associated with Z has. Finally, @ has a Gohberg-Krein factorization if and 
only if E has. 

Proof: Write the (k, I) entry of a’(z) as 

ndZ)/Zmk’dk:(Z) d,(z - ‘>, 

where n,,(z), dA(z), and di(z) are polynomials, with dA(z) and dk;(z) 
having all their zeros outside the closed unit disk, and where mk, is an 
integer. Define P(z) = diag( p,,(z),..., p,,(z)}, where p,,(z) is the least 
common multiple of (d:,(z): k = l,..., n). Similarly. define J(z) = 
diag( j,i(z),.... jnn(z)}, where j,,(z) is the least common multiple of (d,(z): 
I= I,..., n}. It is a simple exercice to verify that the polynomial matrices J(z) 
and P(f), so defined, satisfy (3). 

Let J(z) =J(z-‘). From (3) it is readily seen that 

T,TT,T,= TI. (4) 

Moreover, because J and P are with their inverses in H,“,,,, it follows that TJ 
and Tp are invertible (in fact, their inverses are TJm, and T,-,, respectively). 
Hence T, is invertible if and only if T,- is invertible. 

From (4), the invertibility of T,- and Tp, and the special structure of these 
Toeplitz operators and their inverses, it follows that the Levinson system 
associated with @ has a solution if and only if the Levinson system 
associated with E has. 

Finally, owing to (3), @ has a Gohberg-Krein factorization if and only if 
z has. This completes the proof. 

In view of this theorem, one can work on the trigonometric polynomial 
Z(z), rather than on the rational function Q(z). In the sequel, we shall look 



TOEPLITZ OPERATORS AND FACTORIZATION '99 

at the invertibility of T,. the Levinson system of equations associated with 
Z(z), and the factorization of Z(z). The Levinson system of equations 
associated with Z(z) will be written 

(Sa) 

(Sb) 

with { Qk : k E NJ E hi rn and (Kk: k E N) E hi x ,I the unknown quantities. 
The normalized Gohberg-Krein factorization of Z(Z) will be written 

Z(z)=L(zF’)R,‘R(z). (6a) 

L.L-‘.R.R-‘EH;: ,,,. (6b) 

Finally, in view of Proposition 1. we shall assume in the sequel that Z(Z) has 
no zeros on the unit circle. 

3. BASIC RESULTS 

Throughout this section, it is assumed that E’(z) is the trigonometric 
polynomial defined by (3). and that the condition det f(e’“) + 0 for all 
BE 10. 27~) necessary for T, to be invertible, is satisfied. This allows us to 
define 

+ % 
E-‘(z-l)= Y(z)= \‘ kpz”. (7) 

k-lx 

a rational function without poles and zeros on the unit circle. As said in the 
introduction, this function will play a crucial role. The Levinson system of 
equations associated with Y is defined as 

Lo I 
TV 

r-Ill 
L, 0 
L, = 0 ’ 

IR,TY+Ti---C~ 

(83) 

(8b) 
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where (Lk : k E N} E hi,,, and {R,: k E N) E hz,, are the unknown quan- 
tities. The normalized Gohberg-Krein factorization of !P is defined as 

Y(z) = Q(z - ‘) K, ‘K(z), (94 

K, K-‘. Q, Q-’ E HcX”. Pb) 

The fact that the notations R(z) = CF;O R,zk and f.(z) = CkZ_oLkzk are 
used to denote both the solution of the Levinson system (8) and the solution 
of the normalized Gohberg-Krein factorization problem (6) is not 
accidental. As we shall see, they coincide. Likewise, the solution of the 
Levinson system (5) provides the solution to the normalized Gohberg-Krein 
factorization problem (9), and conversely. 

We now come to the basic result. 

THEOREM 1. Consider the trigonometric polynomial Z(z) = Cf= in Z,z k, 
with det .Y(@) # 0 for all B E [0, 27~). Let Z- ‘(z-l) = Y(z). Then the 
following six statements are equivalent: 

(a) T, is invertible. 

(b) There e.xists a solution to the Levinson system (5) associated 
with Z. 

(c) 3” has a normalized Gohberg-Krein factorization (6). 

(a’) T, is invertible. 

(b’) There exists a solution to the Levinson system (8) associated 
with Y. 

(c’) !P has a normalized Gohberg-Krein factorization (9). 

Moreover, if any of these statements holds, then L, = 0 for k > a + 1 and 
R, =0 for k >/? + 1. Furthermore, Q-‘(z) = R(z), K-‘(z) = L(z), 
Y(z)&)= Q(z-‘,L,, and R(z-‘) Y(z) = R,K(z). Finally, the solutions to 
the Levinson systems associated with E and Y are unique, and the 
normalized Gohberg-Krein factorizations of E and Y are unique. 

Proof 

(a’) * (b’). Trivial. 

(b’) 3 (b). Levinson equation (8a) can be rewritten 

Y(z)L(z)=Z+ x,z-k=X(z?). G 
k=l 

YE LPXP,, and L E Hi,,, yield X E Hi Xn. From (lo), it also follows that 
L(z) = Z(z-‘) X(z-‘), from which we deduce L(z) = CE=,, Lkzk; it further 
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follows that X is rational, and hence in Hey n. Premultiplying b.oth sides of 
(10) by R(z-‘) yields 

R(zT’) Y(z)L(z)=R(zT’) (I+ i- x,: “). (II) 
c-1 

Likewise. from Levinson equation (8b), one obtains 

R(z-‘) Y(z)=lf 2 YhZ” = Y(z). 
h-l 

with. successively, YE Hi,,,. R(z) = rfm O R,zh. and I’ rational and in 

H:, ,, . Further. ( 12) implies 

R(z -I) lqz)L(z)= (If 2 Y$) L(z). 
\ h-l I 

Comparison of (11 ) and ( 13 ) yields 

R(z-‘) Y’(z) L(z) = R, = L,,. (14) 

It is claimed that R, = L, is nonsingular. Indeed, assume it is singular. 
Then ( 14) yields det R(z -‘) det Y’(z) det L(z) = 0. Since det yl(@) # 0. 
VB E [0, 27~) it follows that det R(e-,“) det L(d’) = 0, V0 E 10, 2n). R and L 
being polynomial, this implies either det R(z) = 0 or det L(z) = 0. The first 
alternative, by (12), yields det Y(z) = 0, which is impossible, because Y(z) = 
I+x;;, YkzkEH& The second alternative leads to the same kind of 
contradiction. Hence R, = L, is nonsingular. 

With L, nonsingular, (10) yields L(z -‘) L;’ = E(z) X(r) L,‘. Setting 
Q=XL,‘EH;:,n yields Levinson equation (5a). Likewise, with R,, 
nonsingular. (12) yields R,‘R(z)=R,‘Y(z~‘)Z(Z). Setting K= 
R,‘YE HZ n, n yields Levinson equation (5b). 

(b) 3 (c). Levinson equation (5a) can be rewritten 

L'(Z) Q(Z) = I + ” U,z ‘. (1.5) 
A.’ 

which implies that Q is rational. This and Q E Hf, . ,, yield Q E H,: ,,. 
Premultiplying both sides of (15) by K(z-‘) yields 

K(z-‘)Z(z)Q(z)=K(z-‘) (I+ *‘, &z-“). (16) 
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Likewise, Levinson equation (5b) can be rewritten 

K(z-‘)E(z)=Z+ 4 v,z”. 
k:’ 

with, successively, K rational and in HFX ,I. Further, (17) also implies 

K(z-') 3(z) Q(z) = (Z + (- Vkzk) Q(z), 
k:’ 

(17) 

(18) 

Comparison of (16) and (18) yields 

K(z-') E(z) Q(z) =K, = Q,. (19) 

It is claimed that Q, = K, is nonsingular. Indeed, assume it is singular. 
From (19), we then have det K(z- ‘) det Z(z) det Q(z) = 0. Since 
det Z(e’“) # 0, t/B E [0, 27r), and since K and Q are rational and in HF, “, it 
follows that either det K(z-‘) = 0 or det Q(z) = 0. The first alternative 
contradicts (17) and the second (15). Hence Q, = K, is nonsingular. 

From (19), we deduce 

det Q(z) = det Q,,/det[K(z-‘) Z(z)]. 

By (17), det[K(z-‘) Z(z)] is a polynomial which cannot vanish on the unit 
circle, because Q E Hzx n. Hence Q -’ exists and is in Hzx n. A similar 
argument yields the existence of K-’ E H$,. From (19) it follows that 
Y(z) K-‘(z) = Q(z - ‘) Q; ‘. Comparing this with (8a) yields Kp ’ = L, where 
L is defined as the solution of Levinson equation (8a). A similar argument 
yields Q ’ = R. Setting Q- ’ = R and K- ’ = L in (19) yields the normalized 
Gohberg-Krein factorization (6) of E. 

(c) e (c’). Trivial. 

(c’) a (a’). Define Q(Z) = Q(z-‘). From the normalized 
Gohberg-Krein factorization (9) of Y, it follows that r, = TQT,,,,. 
Moreover, because Q, Q-‘, K, and K-’ are in HTxO,,, it follows that Tir and 
TKRlg are invertible (in fact, their inverses are TQ-, and Tx-,Ko, respectively). 
Hence T, is invertible. 

(c) =L (a). Essentially the same as the proof of (c’) => (a’). 

(a) 2 (b). Trivial. 

This has finished closing up the proof cycle. It remains to prove the 
additional claims. In the proof of (b’) 3 (b), we have seen that L(z) = 
C;=, Lkzk and R(z)=Cf=,R k~k. Still in the proof of (b’) * (b), we have 
seen that V(z) L(z) = X(z-‘), with Q(z) =X(z) L;‘; this yields Y(z) L(z) = 
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Q(zc’)~;,. The proof of R(z-‘) Y(z) =R,K(z) goes similarly and is 
omitted. In the proof of (b) * (c), we have seen that Q- ’ = R and Km ’ = L. 
The uniqueness of the solution to the Levinson systems (5) and (8) is trivial 
from the invertibility of T,- and T,. Since the solutions to the Levinson 
systems provide the solutions to the factorization problems, and conversely. 
the uniqueness of the former implies the uniqueness of the latter. This 
completes the proof. 

It is clear that the existence of a solution to either the Levinson system (5) 
or (8) is close to a potential invertibility criterion for Toeplitz operators with 
rational symbols. While the Levinson system associated with 3 has a 
solution with infinitely many nonzero terms, the Levinson system associated 
with Y has only finitely many nonzero terms in its solution. Hence we prefer 
working with the Levinson system associated with Y to derive an inver 
tibility criterion for Toeplitz operators with rational symbols. This is the goal 
of the next section. 

4. NEW INVERTIBILITY CRITERION 

The big advantage of looking at the Levinson system associated with Y is 
that, if it admits a solution, then this solution has only finitely many nonzero 
terms. With a little extra effort, this problem will be reduced to a purely 
finite-dimensional one. For notational convenience. let 7u;b be the top left- 
hand corner submatrix of T, consisting of an rows and bn columns. We 
have 

LEMMA 2. Consider the n x n trigonometric po&zomial Z(z) = 
x;= in &zk, with det Z(.@) # 0 for all B E [0, 271). Let Y(z) = .Z ’ (z ’ ). 
There exists a triple (A, B, C), with A an m x m (m < (a + ,8 + 1)n) matrix, 
B an m x n matrix, and C an n x m matrix, defining a linear system of state 
space dimension m, observable with observability index less than or equal to 
a + /3 + 1, and such that 

Moreover. a similar statement holds for the matrix TV ‘.Oc’. 

ProoJ The proof of this result proceeds along the lines of finite- 
dimensional realization theory. For the details, see Appendix A. 

We can now state the final result-a new invertibility criterion for 
Toeplitz operators with trigonometric polynomial symbols. 

409T37:1 20 
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THEOREM 2. Consider the n x n trigonometric polynomial Z(z) = 
c:= -a ZkZk, with det .Z(e’“) + 0 for all 0 E [0,2n). Let .Z- ‘(z - ‘) = Y(Z). 

Then the Toeplitz operator T, is invertible if and only if there exists a 
solution ({Lk : k = 0 ,..., a ), (Rk : k = 0 ,..., j?}) to the system of equation 

~+llt2,a+l L, 
P 

Li 
42 

I 1 

, PIa) 

I I 

IRO R, .-. RBI T$+‘.Q+~+* = 1 Z 0 . . . 01. @lb) 

Moreover, if it exists, this solution provides the nonzero terms of the solution 
to the Levinson system (8), and is unique. 

Proof. Assume T, is invertible. Hence, by Theorem 1, there exists a 
solution to the Levinson system (8), with L,=O for k>a+ 1 and R,=O 
for k >p + 1. This directly yields (21). 

Conversely, assume (21) has a solution. By making use of Lemma 2, 
Eq. (21a) can be rewritten 

with X = AUBL, + -.. + BL,, an m x n matrix. Still by Lemma 2, the pair 
(A, C) is observable with observability index less than or equal to a + p + 1. 
Hence the (a +/I + 1)n last equations of (22) imply AX = 0. It follows that 
A”+4t2X = Aa+Bc3X = . . . = 0. This and (22) yield 

Lo Z 

TCG.a+l L, 0 
e 

m 

= 
0 * 

L, i 

Setting Ln+, = Laf2 = ... = 0 yields a solution to Levinson equation (8a). 
Likewise, it is proved that a solution to (21b) yields a solution to Levinson 
equation (8b). Since there exists a solution to the Levinson system (8), by 
Theorem 1, T, is invertible. 
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In the above paragraphs, it has been proved that the solution to (2 1) 
provides the nonzero terms of the solution to the Levinson system (8). and 
conversely. Since the solution to (8) is unique by Theorem 1, so is the 
solution to (21). This completes the proof. 

Remark. Pattanayak [14] also provided an invertibility criterion for 
Toeplitz operators with rational symbols; this criterion takes the form of a 
winding number condition together with a finite-dimensional matrix having 
maximal rank. The latter part of this criterion involves, in an explicit and 
very intricated way, the zeros of the symbol; also, this criterion is neatly 
related to neither the inverse of the Toeplitz operator nor the solution to the 
Gohberg-Krein factorization problem. (It seems that the zeros of the symbol 
are intrinsic in the invertibility of a Toeplitz operator and in the factorability 
of its symbol; see [24, Conclusion].) Our criterion does not involve any 
winding number condition. Also, in our criterion, the zeros of Z(z) appear 
only implicitly in the Fourier expansion of E-‘(z -‘) = Y(z). Finally, as 
stated by Theorem 2, our criterion readily provides the solution to the 
factorization problem and hence to the inversion problem. 

5. CONCLUSION 

A simple and self-contained approach to a triple problem-the inver- 
tibility of the Toeplitz matrix T, associated with a trigonometric polynomial 
= the existence of a solution to the associated Levinson system of equations, 
ind the Gohberg-Krein factorability of - z-has been presented. As a main 
result, the usefulness of looking at the Toeplitz matrix T, with 
Y(z)=P (z-l) has been shown, all the relevant information related to this 
triple problem being contained in two finite submatrices extracted from T,. 

APPENDIX A 

LEMMA A.1. Let P(z) = Cf=, P,zk be an n x n polynomial matrix of 
formal degree d(P, # 0) and normal rank n. Then there exist an n x n 
po!vnomial matrix D(z) = Cf;A D, zk + Izd and an n x n po!vnomial matrix 
M(z) = c;=O Mk zk such that P-‘(z) = D-‘(z) M(z). 

ProoJ This result is implicitly contained in a paper by Silverman and 
Payne [27, Corollaries 4.3 and 4.4, Theorem 4.31. It is also contained in a 
yet more implicit form in a paper by Forney [29, Theorems 3 and 5 ]. To be 
self-contained, we sketch a simple proof. 

If the polynomial matrix P(z) has nonsingular leading coefficient, that is. 
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if rank (PJ = n, then the theorem is proved. It suffices 
and D(z) = Pi ‘P(z). 

to take M(z) = Pi ’ 

If rank(P,) < n, a recursive algorithm defines a sequence (P,(z) = 

C;f=OPk . ’ zk. I = 0, 1,2,...} of n X n polynomial matrices of full normal rank 
and such that P,(z) = M,(z) P(z), where M’(z) is an n X n polynomial matrix 
of full normal rank. 

The sequence of polynomial matrices is defined recursively as follows: For 
I= 0, P”(z) = P(z). Now, assume P’(z) is known. If rank (Pd) = n, the 
theorem is proved; it suffices to take D(z) = (Pi)-‘P’(z) and M(z) = 
(PL)-‘M,(z). If rank (PL) = r, < n, we define an n x n nonsingular row 
operation matrix S’ such that S’Pf, has r, linearly independent rows and 
n - r, zero rows. Obviously, there is a great deal of freedom in choosing S’ 
[28, Remarks 1 and 2 1. It is rather easily seen that one can take S’ upper- 
triangular with I’s on the diagonal. Let i,,..., i,. be the indices of the 
vanishing rows of SIP;, with u = n - r,. The rows i, ,..., i,, of P’(z) must all 
be nonvanishing, for otherwise P’(z) would not have full normal rank. Let 

Pi, v*-*, pi, be the largest powers of z appearing in rows i,,..., i,, respectively, 
of P’(z). Define 

T,+‘(z) = diag{ l,..., 1, zd-‘+, l,..., 1, zdmPil., l,..., 1 }. 

T T 
ilth position i,.th position 

Obviously, T,“(z) S/P,(z) has formal degree d with the rows of the leading 
coefficient nonvanishing. Let U “’ be an n x n row permutation matrix such 
that the rows of U’+‘T’+‘(z) S/P,(z) have increasing delays 

U’+‘T,+‘(z) S/P’(z) = 

Then define P,+‘(z) = I!J,~‘T,~ ‘(I) S,P,(z). 
The key for understanding how the algorithm terminates is the following: 

For I = 1, 2,..., because S’ has been chosen as upper-triangular, the delays of 
P”‘(z) are greater than those of P’(z); more precisely, 

cP+ 1 l>, 8:. , i = 1, 2 ,..., n; 1 = 1, 2 ,...; 

n 
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It is now clear that the algorithm must terminate by a matrix P’(Z) with 
nonsingular leading coefftcient, for otherwise P(z) would not have full 
normal rank. Hence taking D(z) = (Pi)-‘P’(z) and M(z) = (Pi)-‘M’(z) 
completes the proof. 

COROLLARY A.l. Under the same hypothesis as in Lemma A. 1, there 
exist an n X n polynomial matrix D(z) = Cfi;A D,zk + Izd, an n x n 
polynomial matrix N(z) = x?i Nkzk, and an n x n polynomial matrix 
Q(z) = r;Z,” Qk zk such that P-‘(z) = D- ‘(z) N(z) + Q(z). 

Proof. By Lemma A.l, there exist an n x n polynomial matrix D(z) of 
formal degree d with unit leading coefficient and an n x n polynomial matrix 
M(z) of formal degree a such that P-‘(z) = D-‘(z) M(z). 

If a < d - 1, define N(z) = M(z), and the theorem is proved. 
For the case a ad, observe that we have Zzd = D(z) - Dd_,zd-’ - 

. . . -D,. It readily follows that P-‘(z) = D-‘(z)[-Dd-‘M,z’-’ - a.. - 
D,M,z~-~ + MO-, z”-’ + . . . + M,] + MazaPd. Hence the formal degree of 
the polynomial matrix postmultiplying D-‘(z) has dropped from a to a - 1. 
Continuing this procedure yields P-‘(z) = D-‘(z) N(z) + Q(Z), with 
N(z) = Ciri Nkzk and Q(z) = Ci:t Qkzk. This completes the proof. 

Remark. As defined in Corollary A.l, D-‘(z) N(z) is a matrix fraction 
representation of a transfer matrix [32, Section II]. The coefficient matrices 
of D(z) and N(z) give, directly, the so-called observable canonical state 
space representation. This state space representation is controllable if and 
only if D(z) and N(z) are left coprime [32, Section II], [31, Chapter 2, 
Section 61. From the construction outlined in the proof of Lemma A. 1, it 
follows that M(z) and D(z) are not left coprime, unless P(z) has already 
nonsingular leading coefficient. If M(z) and D(z) are not left coprime, it 
follows that N(z) and D(z) may not be left coprime and that the observable 
canonical state space representation of D-‘(z) N(z) may not be controllable. 

Proof of Lemma 2. With Z(z) defined by (3b). zn “E(z) is a 
polynomial. Application of Lemma A. 1 and Corollary A. I to the polynomial 
matrix zn + ‘Z(z) yields polynomial matrices 

Cl+4 
D(z) = \’ Dkzk + Zz” +*’ ‘. 

k=l 

(A. la) 

Cl+4 

N(z) = K’ Nkzk, 
h?lJ 

(A.lb) 

Q(z)= + Qkzk. 
k:O 

409 8’ I ?I 

(A.lc) 
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such that 

Q(z)+D-‘(z)N(z)= [z”+‘E(z)]-‘= F !Z’k~-k-n-‘. 
k=‘I’,x 

(A. Id) 

The proper rational transfer matrix D-'(z) N(z) admits the “companion” 
realization 

D-'(z)N(z)=H(zZ-F)-'G, (A.2a) 

H= [0 0 ..a 0 Z], (A.2b 

0 0 0 .a. 0 0 
Z 0 0 ... 0 -D, 

9 (A.2c 

0 0 0 ... Z -Da+4 

rNo 1 

) 

G= (A.2d) 

This realization has state space dimension (a + /? + l)n, and is observable 
with observability index a + p + 1. Note that it is not necessarily 
controllable, because, as explained in the above remark, N(z) and D(z) are 
not necessarily left coprime. Without loss of generality, assume that by a 
similarity transformation the state space realization (A.2) has been brought 
into the form 

D-'(z)N(z)=H(zZ-F)-'G, 

H= [HI Hz], 

(A.3a) 

(A.3b) 

F= [Fd’ Fq, 1, IAi(Fll)I < 1, I~i(F~z)l > 1, (A.3’) 

G= 

the partitionings of H and G are consistent with that of F. 
From (A.1) and (A.3), it follows that 

(A.3d) 

k=‘r, 
Y Z-~--I = H,(zZ- F,,)-'G, + H,(zZ- FJ'G, + Q(z). k 
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This and (A.3c) yield 

(A.4) 

Recall that (F. H) is observable with observability index u +/I + I. and 
notice that 

Hence (F,, . H,) is observable. Furthermore, the row range of (Pa + !’ ’ “I H ‘. 
pa+ll+Z)T~T . ..)T is included in the row range of (H’. F-‘H’..... 
F(n+4’THT)T. Hence the row range of ‘(F\‘f+“+ ‘jTH:. F~~C”+“TH:,...)’ is 
included in the row range of (H:, F:, H: ,..., Fiy c4’TH:)r. Hence (F,, , H, j is 
observable with observability index less t,han or equal to u + j3 + 1. 

Finally. from (A.4) it follows that 

Taking (F,, , G,, H,) = (A, B, c) yields Lmma 2. 
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