360 research outputs found

    Semidefinite programming, harmonic analysis and coding theory

    Full text link
    These lecture notes where presented as a course of the CIMPA summer school in Manila, July 20-30, 2009, Semidefinite programming in algebraic combinatorics. This version is an update June 2010

    Linear programming bounds for codes in Grassmannian spaces

    Full text link
    We introduce a linear programming method to obtain bounds on the cardinality of codes in Grassmannian spaces for the chordal distance. We obtain explicit bounds, and an asymptotic bound that improves on the Hamming bound. Our approach generalizes the approach originally developed by P. Delsarte and Kabatianski-Levenshtein for compact two-point homogeneous spaces.Comment: 35 pages, 1 figur

    Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification

    Full text link
    The Maximum Likelihood (ML) and Cross Validation (CV) methods for estimating covariance hyper-parameters are compared, in the context of Kriging with a misspecified covariance structure. A two-step approach is used. First, the case of the estimation of a single variance hyper-parameter is addressed, for which the fixed correlation function is misspecified. A predictive variance based quality criterion is introduced and a closed-form expression of this criterion is derived. It is shown that when the correlation function is misspecified, the CV does better compared to ML, while ML is optimal when the model is well-specified. In the second step, the results of the first step are extended to the case when the hyper-parameters of the correlation function are also estimated from data.Comment: A supplementary material (pdf) is available in the arXiv source

    Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

    Get PDF
    Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in details.Comment: 47 pages. A supplementary material (pdf) is available in the arXiv source

    New upper bounds for kissing numbers from semidefinite programming

    Get PDF
    Recently A. Schrijver derived new upper bounds for binary codes using semidefinite programming. In this paper we adapt this approach to codes on the unit sphere and we compute new upper bounds for the kissing number in several dimensions. In particular our computations give the (known) values for the cases n = 3, 4, 8, 24.Comment: 17 pages, (v4) references updated, accepted in Journal of the American Mathematical Societ

    Upper bounds for packings of spheres of several radii

    Full text link
    We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We perform explicit computations, obtaining new bounds for packings of spherical caps of two different sizes and for binary sphere packings. We also slightly improve bounds for the classical problem of packing identical spheres.Comment: 31 page

    Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

    Get PDF
    We apply the semidefinite programming approach developed in arxiv:math.MG/0608426 to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the SDP framework to get analytic bounds.Comment: 15 pages, (v2) referee comments and suggestions incorporate

    Signal reconstruction from the magnitude of subspace components

    Full text link
    We consider signal reconstruction from the norms of subspace components generalizing standard phase retrieval problems. In the deterministic setting, a closed reconstruction formula is derived when the subspaces satisfy certain cubature conditions, that require at least a quadratic number of subspaces. Moreover, we address reconstruction under the erasure of a subset of the norms; using the concepts of pp-fusion frames and list decoding, we propose an algorithm that outputs a finite list of candidate signals, one of which is the correct one. In the random setting, we show that a set of subspaces chosen at random and of cardinality scaling linearly in the ambient dimension allows for exact reconstruction with high probability by solving the feasibility problem of a semidefinite program

    On the theta number of powers of cycle graphs

    Get PDF
    We give a closed formula for Lovasz theta number of the powers of cycle graphs and of their complements, the circular complete graphs. As a consequence, we establish that the circular chromatic number of a circular perfect graph is computable in polynomial time. We also derive an asymptotic estimate for this theta number.Comment: 17 page
    corecore