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Abstract Commonly used methods in Deep Learning do not utilise transfor-
mations of the residual gradient available at the inputs to update the represen-
tation in the dataset. It has been shown that this residual gradient, which can
be interpreted as the first order gradient of the input sensitivity at a particular
point, may be used to improve generalisation in feed-forward neural networks,
including fully connected and convolutional layers. We explore how these in-
put gradients are related to input perturbations used to generate adversarial

examples, and how the networks that are trained with this technique are more
robust to attacks generated with the Fast Gradient Sign method.

1 Introduction

Most supervised Deep Learning models are trained with backpropagation [22,
6], and different variants of Gradient Descent. The main principle upon which
this methodology is based is the application of a so-called weights update rule,
which uses an error gradient with respect to the internal parameters of the
model

∆Wt = ∇E (Wt) (1)
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at training epoch t, where Wt are the parameters of the hypothesis h(Wt, X)
being optimised, where X = {x1,x2, . . . ,xm} is the input matrix. Such an
update rule ∆Wt is used to produce an incremental parameter change:

Wt+1 = Wt − λ∇Et (Wt) (2)

where λ is usually called the learning rate. The function Et generates the
values of the error function at time t, sometimes also referred to as the cost

function.
For simplicity of notation, we indicate nodes with a single index, rather

than identifying them by layer and position in the layer. In practice, when
considering Artificial Neural Networks trained with back-propagation, each
parameter wki→lj,t, which represents the weight connecting the i-th node of
the k-th layer to the j-th node of the l = (k + 1)-th layer, ∀l ∈ 1, ...N is
updated by considering the corresponding element of the Jacobian i.e the
partial derivative

∂Et

∂wki→lj,t

(3)

of the error function Et with respect to each weight. This information is used
in the calculation of wki→lj,t+1.

When back-propagated, the calculation of the partial derivative of Equa-
tion (3) is based on application of the chain rule, as shown in Equation (4)
below, and typically stops at the first/input layer k = 0. N is the number of
layers in the network.

∂Et

∂w0i→1j,t
=

∂w1i→2j,t

∂w0i→1j,t
. . .

∂w(N−1)i→Nj,t

∂w(N−2)i→(N−2)j,t

∂Et

∂w(N−1)i→Nj,t

(4)

The term
∂w1i→2j,t

∂w0i→1j,t
of the equation is some times called input sensitivity. If

we abbreviate this term as St, then we can reformulate Equation (4) in terms
of the input sensitivity, as shown in Equation (5):

∂Et

∂w0i→1j,t
= St

∂w2i→3j,t

∂w1i→2j,t
. . .

∂w(N−1)i→Nj,t

∂w(N−2)i→(N−1)j,t

∂Et

∂w(N−1)i→Nj,t

= St

∂Et

∂w1i→2j,t

(5)

1.1 Deep Neural Networks

Deep Neural Networks (DNN) follow basic principles of traditional Artificial
Neural Networks but include a large number of layers. An example of such a
methodology is shown in Ref [2].

The backpropagation profile of these networks works as follows. Given a set
of weights wki→lj , a node value netj and a continuous differentiable activation
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function ϕ(x) 1, then the output olj,t of a node j in a hidden layer l at time t

of a DNN is

olj,t = ϕ(netlj,t) = ϕ

(

n
∑

i=1

wki→lj,toi

)

(6)

and the derivative of the error with respect to the weights of a node in the
output layer can be rewritten as

∂Et

∂wki→lj,t

=
∂Et

∂olj,t

∂olj,t

∂netlj,t

∂netlj,t
∂wki→lj,t

. (7)

For all n nodes in the previous layer i = l − 1, the last term becomes

∂netlj,t
∂wki→lj,t

=
∂

∂wki→lj,t

(

n
∑

z=1

wkz→lj,tokz,t

)

= oki,t. (8)

The second term becomes

∂olj,t

∂netlj,t
=

∂

∂netlj,t
ϕ(netlj,t) (9)

and for each node p in a layer q, the first term becomes

∂Et

∂olj,t
=

∑

q=1→l−1

∑

p∈q

(

∂Et

∂netqp,t

∂netqp,t
∂olj,t

)

=
∑

q=1→l−1

∑

p∈q

(

∂Et

∂oqp,t

∂oqp,t

∂netqp,t
wmp→lj,t

)

,

(10)

1.2 Convolutional Neural Networks

Convolutional Neural Networks [12] are normally composed of two parts: con-
volution and pooling. Convolution creates a sliding window over the input
space which is convolved to learn a shared set of weights that produces a
smaller output. Pooling reduces the number of features by selecting only the
maximum out of a pre-defined pool of the outputs of the convolutional step.
For convenience we consider convolution in two dimensions, however the pro-
cedure can be extended to an arbitrary number of dimensions.

If we consider an N ×M rectangular output from layer node i in layer k to
node j in layer l, to which a n×m rectangular kernel Wki→lj,t is applied, the
forward pass of the convolution operation to produce an output value olj,t,
after applying an activation function ϕ(·), yields:

olj,t = ϕ

(

n−1
∑

a=0

m−1
∑

b=0

wabok(j+{a,b})

)

, (11)

1 in some cases activation functions with a single non-differentiable point with no discon-
tinuity has been shown to still work [5]
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where wki→lj,ab,t is the weight contained in the kernel W at coordinates a, b,
and j = {j0, j1} are the coordinates of the output value. This makes the
gradient more complex, but still computable:

∂Et

∂wki→lj,ab,t

=

n−1
∑

a=0

m−1
∑

b=0

∂Et

∂olj,t

∂olj,t

∂wki→lj,ab,t

=

n−1
∑

a=0

m−1
∑

b=0

∂Et

∂olj,t
ϕ′
(

ok(j+{a,b},t

)

ϕ
(

ok(j+{a,b},t

)

(12)

this can be propagated backwards, obtaining:

∂Et

∂okj,t
=

n−1
∑

a=0

m−1
∑

b=0

∂Et

∂ol(j−{a,b}),t

∂ol(j−{a,b}),t

∂okj,t

=

n−1
∑

a=0

m−1
∑

b=0

∂Et

∂ol(j−{a,b}),t
wki→lj,ab,t

(13)

The rest of the paper is structured as follows. Section 2 explores the theory
behind the technique and introduces new considerations in merit. Section 3 ex-
plores the relationship between learning input representations and adversarial
examples. Section 4 extends the theory to random perturbations of the input
(such as random noise). Section 5 shows experimental results on benchmark
datasets in computer vision. Section 6 shows experimentally how the networks
generated develop a higher robustness to adversarial examples, and Section 7
draws final conclusions about the technique and the associated experimental
results.

2 Backpropagating the error to the input

By the same principle, the chain rule can be applied once more, obtaining a
new partial derivative of the error with respect to the specific representation of
each component of the input matrix X at epoch t, as shown in Equation (14).
We call this the residual error gradient at the inputs.

∂Et

∂xi,t

=
∂Et

∂w0i→1j,t

∂w0i→1j,t

∂xi,t

. (14)

where w0i→1j,t is the weight that connects input i to node j in the first layer.
The idea of forming global representations of the input patterns has been

previously investigated in the FGREP model [14], where an external lexicon
network is continuously updated by extending the formulation of Backpropa-
gation to the input representations stored in the lexicon. This work lays the
foundation upon which we can construct a more general formulation that can
be extended to adapt the representation of the training inputs of the Artificial
Neural Network, rather than a randomly initialised lexicon.
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This approach has been further developed in Ref [17], where the principle
of applying one further step of backpropagation to obtain an update of the
inputs in convolutional and fully-connected deep neural networks has been
introduced. The authors also provide a proof of computability of the residual
error of Equation (14). An important caveat is that, because ∂Et

∂xi,t
is determined

analytically, the proof does not hold when random perturbations of the input
are present, such as random noise injection or elastic transformations [23]. We
will however show that, when the random perturbations are designed to have
a mean converging towards zero, this approach can still be applied, and as
our experiments confirm, it is able to still provide comparable generalisation
capability.

The residual error of Equation (14) can be utilised to update the value of
the inputs at each training epoch to increase the speed of convergence, with
the goal of maximising the internal gradients of the network at the following
epoch t + 1. Furthermore, because we are operating on the very first inputs
into the network, we do not need to distinguish between different types of
networks.

Therefore an iterative scheme to adapt the input representations at each
time step t can be expressed as

Xt+1 = Xt + λ̄∇Et (Xt) , (15)

where λ̄ is a chosen input update learning rate. While previous work [17] recom-
mended that 0 ≤ λ̄ ≤ 1 and a value of λ̄ = 1 worked well in our experiments,
after further experimentation we found that values in the range −1 ≤ λ̄ ≤ 1
also work well and that the best available value of λ̄ can be searched by hy-
perparameter optimisation.

3 Relationship to adversarial examples

Adversarial Examples [25] are a particular type of learned input perturba-
tion that, although being imperceptible to the human eye, and therefore very
small in magnitude when compared with the undisturbed input values, are
able to modify the output of a neural network significantly. In some cases
these examples have been likened to the neural network’s equivalent of an op-
tical illusion. In Ref [4] the authors attempt to explain this phenomenon in
terms of the linear nature of the neural networks, and provide an example of
how such examples can be generated. In Ref [19] the authors illustrate how
such examples could become dangerous, especially as deep learning and neural
networks become more prominent in the modern technological landscape.

Partial solutions exist, in the form of adversarial training (the act of gener-
ating several adversarial examples from regular training examples and adding
them to each training epoch), and defensive distillation [20], where a vulnera-
ble model is run through the process of distillation [7] to reduce the sensitivity
to adversarial examples.
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The generation of such adversarial examples relies on the attacker having
access to the gradients of the model. However, several approaches aimed at
hiding this gradient, sometimes called “gradient masking”, have been shown
to not be effective at reducing the sensitivity to these examples [19].

Given that the approach towards generating and protecting from adversar-
ial examples is very similar to that of adapting the input representations, as
explained in Ref [17], we analyse the relationship between the two approaches.

In both cases, there is an original traning example xm, taken from a train-
ing set X, which is then combined with a perturbation υm, which is static
with respect to the final network for generating an adversarial example x̃m,
and pertains to the current training epoch in the case of input updates xi,t,
taking the form of υi,t. Equation (16) shows the approach for adversarial ex-
amples, whilst Equation (17) shows the related expression for the training
input updates.

x̃m = xm + υm (16)

xi,t+1 = xi,t + υi,t (17)

Because of the similarity between Equation (16) and Equation (17), a more
general notation that applies to both cases can be used to derive the expression
in Equation (18), for the entire training set, with the special case that for
updated inputs at each epoch, Xt+1 = X̃t.

X̃t = Xt + Υt (18)

In both cases, we know that Υ is derived from the gradients of the model,
defined as sensitivity of the model with respect to the input changes, as shown
in Equation 19, where F (·) is some arbitrarily chosen function.

Υ = F (∇E (Xt)) (19)

3.1 Current approaches

In the so-called “Fast Gradient Sign method” [4] for generating the adversarial
examples, the sign of the partial derivatives of the cost with respect to the
input is applied as an input perturbation, as shown in Equation (20). It is
to be noted that the notation used by the authors is different from that used
in this paper, and a translated version to the notation used in this paper is
provided instead.

x̃i,t = xi,t + λ̄ sgn

(

∂Et

∂xi,t

)

(20)

In the Domain-adversarial Neural Networks [3], the authors take a domain-

based approach to determine a new type of network that utilises a “gradient
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reversal layer” to ensure that feature distributions over the source and target
domains are made similar. This type of approach, whilst not explicitly targeted
at adversarial examples, illustrates that other solutions may exist that are not
based on modified input values.

3.2 A smooth approach

By following the method prescribed in Ref [17], we are adding the partial
derivative with respect to the input to the input itself at each epoch, multiplied
by a learning rate λ̄, Equation (21), therefore forcing the network to reduce its
sensitivity to these variations, by forcing larger updates during the following
round.

xi,t+1 = xi,t + λ̄
∂Et

∂xi,t

(21)

If we discard the application of the sgn(·) function, the relation between
the two operations is self-evident. Training the network on inputs that are
continuously updated to reduce the sensitivity to the gradient of the error with
respect to the input can therefore be considered equivalent to the continuous
online creation of new adversarial examples at each training iterarion, against
which the network is hardened. This approach, which we call the Smooth
Gradient Method (SGM) leads to more robust networks and in some cases it
is also able to increase traning speed and accuracy.

By not applying the sgn(·), the input perturbations are no longer limited
to the domain {−λ̄, λ̄}, but are instead able to extend to the entire domain of
R.

4 Extension to random perturbations

For a learning setting with random noise perturbations, we must consider the
asymptotic effect of the additional factor ǫt and how it will impact the consid-
erations made for the improvements in training. It has been shown that under
certain conditions the addition of particular types of training noise to the train-
ing data is very useful to improve the training performace [23]. Previous work
has been done to prove the convergence on perturbations in back-propagation,
and the goal of this section is to illustrate how the concept applies to the per-
turbation ǫt. We assume that ǫt is a random, stationary ergodic process (in
most cases of perturbations this actually the case). This will make the sequence
of X0...Xt a stationary process.

If one extends Equation (18) to include a perturbation from random affec-
tations of the training set ǫt, caused by a noisy learning process at epoch t,
one can obtain the formulation of Equation (22).

Xt+1 = Xt + Υt + ǫt (22)



8 Alan Mosca, George D. Magoulas

A brief explanation of why both the FGSM method and SGM work in a
noisy setting is provided.

We begin by considering the simpler case for Xt+1 = Xt + ǫt. At epoch
t, we expect that the gradient of the error with respect to the current input
will be, in expectation, similar to the error with respect to the original input
X0 = X.

For an input xi,t ∈ Xt, we assume our distribution of each perturbation
ǫi,t ∈ ǫt to also have zero-mean and be symmetric such that

E [ǫt] = 0 (23)

and the variance to be such that its sum over t converges to a finite number.

t
∑

k=0

Var (ǫt) = s (24)

Most random noise is of this kind, as it is usually generated from samples from
a gaussian distribution. We also know that

Xt+1 = Xt + ǫt (25)

If we then unroll the recursive relationship in Equation (25), we obtain

Xt+1 = X0 + ǫ0 + ǫ1 + · · ·+ ǫt−1 + ǫt (26)

or, more simply

Xt+1 = X0 +
t
∑

k=0

ǫk (27)

We can then rewrite our problem statement as

E

[

t
∑

k=0

∂Ek

∂Xt

]

= E





t
∑

k=0

∂Ek

∂
(

X0 +
∑t

k=0 ǫk

)



 = E





t
∑

k=0

∂Ek

∂
(

X0 + E

[

∑t
k=0 ǫk

])





(28)
By the definition of its distribution, we know that

E

[

t
∑

k=0

ǫk

]

=
t
∑

k=0

E [ǫk] = 0 (29)

and that this is admissible because we restricted the sequence of all ǫt to have
a cumulative converging variance (Equation 24, therefore allowing that

E

[

t
∑

k=0

∂Ek

∂Xt

]

≈ E

[

t
∑

k=0

∂Ek

∂X0

]

(30)

We now consider the case for Xt+1 = Xt + Υt + ǫt, which can be stated as
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E [∇Et (Xt)] ≈ E

[

∇Et

(

X0 +
t
∑

k=0

Υk

)]

(31)

and simplified to

E [Xt] ≈ E

[

X0 +

t
∑

k=0

Υk

]

(32)

From a similar unrolling procedure to Equation (26), we can derive that

Xt = X0 +

t
∑

k=0

Υk +

t
∑

k=0

ǫk (33)

and by Equation (29)

E

[

X0 +

t
∑

k=0

Υk +

t
∑

k=0

ǫk

]

= E

[

X0 +

t
∑

k=0

Υk

]

(34)

which in turn allows for

E [Xt] = E

[

X0 +

t
∑

k=0

Υk

]

(35)

Therefore the original statement in Equation (32) can be considered valid.

5 Experimental analysis

The input update technique has been tested on some common benchmark
computer vision datasets, frequently used to compare the performance of Deep
Learning algorithms. Using computer vision tasks allows us also to visualise the
gradients propagated back to the input, the updated inputs and the adversarial
examples in a human–friendly manner. Our experimental methodology consists
of running the same Convolutional Neural Network five times and reporting
the median results. This is the same methodology as reported in [24]. We
chose this methodology because it is in line with other results on the same
datasets, and it allows us to produce effective results even in the case where
the training is a very slow process 2. We first generate our control experiment
without augmenting the input, and we then repeat the same experiments with
the updates enabled. For consistency, the random initializations are fixed to
be in lock-step: the N th run of each of the both variants of the architecture
would receive the same initialisation.

For all network types we used the WAME weight update rule [18], which
has been shown to have good properties of fast convergence on Convolutional
Neural Networks.

2 In certain cases a single network spent upwards of 24hrs to train on a single GPU.
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2500 fully-connected nodes
50% dropout

2000 fully-connected nodes
50% dropout

1500 fully-connected nodes
50% dropout

1000 fully-connected nodes
50% dropout

500 fully-connected nodes
50% dropout

10 way softmax

Table 1: The fully-connected network structure used for the MNIST dataset.

For the input update methodology, after experimental tuning of hyperpa-
rameters, an input learning rate of λ̄ = 0.2 was used to maximise the robust-
ness to adversarial examples.

5.1 Datasets

The datasets used for comparing our technique are common computer vision
datasets, frequently used to compare performance of supervised Deep Learning
methods. They are as follows.

5.1.1 MNIST

MNIST [13] is a common computer vision dataset that associates pre-processed
images of hand-written numerical digits with a class label representing that
digit. The input features are the raw pixel values for the 28 × 28 images, in
grayscale, and the outputs are the numerical value between 0 and 9. There are
50000 training images, 10000 validation images and 10000 test images.

For this dataset, we tested both a Deep Neural Network built only with
fully-connected layers, and a Convolutional Neural Network.

Fully-connected Deep Neural Networks: For the Fully-connected version of the
MNIST network, we used the network structure shown in Table 1.

All layers used batch normalization [9].
Figure 1 shows that the mean test misclassification at each epoch closely

tracks that of the control experiment, and then continues to be reduced after
the control experiment has stopped improving.

Convolutional Neural Networks: For the Convolutional version of the MNIST
network we used the structure illustrated in Table 2.

All layers used batch normalization.
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Fig. 1: Test misclassification rate - DNN on MNIST, without dataset augmentation

64 conv, 5× 5
2× 2 max-pooling
64 conv, 5× 5

2× 2 max-pooling
1024 fully-connected nodes

50% dropout
10-way softmax

Table 2: The convolutional network structure used for the MNIST dataset.

Figure 2 shows that the mean test misclassification at each epoch during
the initial phase of the learning closely tracks that of the control experiment,
and is in most cases marginally better.

5.1.2 CIFAR-10

CIFAR-10 is a dataset that contains 60000 small images of 10 categories of
objects. It was first introduced in [11]. The images are 32× 32 pixels, in RGB
format. The output categories are airplane, automobile, bird, cat, deer, dog,

frog, horse, ship, truck. The classes are completely mutually exclusive so that
it is translatable to a 1-vs-all multiclass classification. Of the 60000 samples,
there is a training set of 40000 instances, a validation set of 10000 and a test
set of another 10000. All sets have perfect class balance.
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Fig. 2: Test misclassification rate - CNN on MNIST, without dataset augmentation

2× 96 conv, 3× 3
96 conv, 3× 3, 2× 2 strides
96 conv, 3× 3, 2× 2 strides
96 conv, 3× 3, 2× 2 strides

2× 2 max-pooling
2× 192 conv, 3× 3

192 conv, 3× 3, 2× 2 strides
192 conv, 3× 3, 2× 2 strides
192 conv, 3× 3, 2× 2 strides

2× 2 max-pooling *
192 conv, 3× 3
192 conv, 1× 1
10 conv, 1× 1

global average pooling
10-way softmax

Table 3: The network structure used for the CIFAR-10 dataset.

The CNN we used for CIFAR-10 is a variant of the model used in Ref [15],
which is a relatively small network that reaches a very good accuracy in a
short training time. Its structure is illustrated in Table 3.

5.1.3 CIFAR-100

CIFAR100 is a dataset that contains 60000 small images of 100 categories of
objects, grouped in 20 super-classes. It was first introduced in Ref [11]. The
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Control With Updates
MNIST-DNN 98.81 % 98.93 %
MNIST-DNN-AUG 99.03 % 99.01 %
MNIST-CNN 99.48 % 99.49 %
MNIST-CNN-AUG 99.55 % 99.64 %
CIFAR-10-CNN 90.51 % 90.48 %
CIFAR-10-CNN-AUG 93.06 % 93.11 %
CIFAR-100-CNN 65.87 % 65.84 %
CIFAR-100-CNN-AUG 70.02 % 70.45 %

Table 4: Test accuracy on the benchmark datasets for the methods compared. DNN indicates
a fully-connected Deep Neural Network, CNN indicates a Convolutional Neural Network,
whilst AUG indicates that dataset augmentation was used.

image format is the same as CIFAR10. Class labels are provided for the 100
classes as well as the 20 super-classes. A super-class is a category that includes
5 of the fine-grained class labels (e.g. “insects” contains bee, beetle, butterfly,

caterpillar, cockroach). Of the 60000 samples, there is a training set of 40000
instances, a validation set of 10000 and a test set of another 10000. All sets
have perfect class balance.

The model we used was the same as that used for the CIFAR-10 dataset,
illustrated in Table 3.

5.2 Data augmentation

The augmentation of available data with additional derived examples, such
as from linear transformation (flip, rotate, zoom, random cropping) or more
complex ones, is a common practice with all the datasets used in this paper. In
the case of MNIST, the application of dataset augmentation practices is indeed
very common. A specialised methodology, called elastic distortions [23], has
been frequently used in conjunction with this dataset, to generate a virtually-
infinite training dataset in an “online” fashion. At each epoch a new distorted
version of the training set is created, by simulating hand jitters and other
non-linear imperfections. In our results we include both augmented and non-
augmented versions of the dataset, for both types of networks.

For CIFAR-10 and CIFAR-100, we utilised ZCAWhitening as a preprocess-
ing method, and then used a light augmentation schedule of random rotations,
zoom, and random horizontal flips. We did not use any random cropping.

5.3 Results

Table 4 shows accuracy on the unperturbed (non-adversarial) test set, for both
our methodology and the control experiment. It is evident that our method-
ology does not affect the learning negatively, because most of the accuracy
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values have been actually improved slightly. In addition, a Wilcoxon test re-
jects the hypothesis that the two experiments are significantly different with
respect to this accuracy measurement. It has been shown in the literature [17]
that using λ̄ = 1 would make such an improvement significant, and as such
our preference for optimising this hyperparameter has been given to learning
robustness to adversarial examples.

6 Testing robustness to adversarial examples

We constructed an adversarial test set, following the procedure explained in [4]:
we added perturbations to the original test set, based on the Fast Gradient
Sign method, and tested accuracy of predictions for each model based on the
dataset. We then compared how each of the trained models fared on this new
test set. We used different values of λ̄ = 0.001, 0.01, 0.1, 0.2 for comparison
with small and large perturbations.

Results are compiled in Table 5. A Wilcoxon paired test shows that the
improvements on adversarial examples are statistically significant at the 0.005
confidence level, giving strong reason to suggest that using the input update
method is able to improve robustness to adversarial examples generated with
the Fast Gradient Sign method.

The images in Figures 3 and 4, show images that have been misclassified
by the original classifier, but have been correctly classified by the classifier
hardened using our method. The adversarial images are still clearly visible as
their original class by the human eye, whilst the classifier is making significant
mistakes – for example the airplane in Figure 4 is being classified as automobile

at both levels of λ̄ being shown. An image of the perturbations alone is also
included, for reference. Even though the figures have been inverted to make
the distortions more evident, in many cases they are still mostly imperceptible.

Figures 5 and 6 show examples of backpropagated input distortions during
the first nine epochs, for MNIST and CIFAR-10 respectively. It is of note that
the updates to the input appear to be small in magnitude, but nonetheless
their effect is noticeable 3.

7 Conclusions

We have shown how adapting the input representations based on the residual
gradient of the error with respect to the inputs at time t, is not only an
effective technique for increasing the speed of convergence and overall learning
capability of an Artificial Neural Network, as was previously shown by Ref [17],
but that the application of this process with a smaller input learning rate λ̄

3 50% grey indicates no update, whilst white indicates an update value of +1 and black
indicates an update value of −1. For CIFAR-10, the three separate colour channels have
been combined into a colour image
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MNIST-DNN
λ̄ 0.001 0.01 0.1 0.2
control 98.77 98.59 94.61 83.31
updates 98.79 98.56 94.68 83.14

MNIST-DNN-AUG
λ̄ 0.001 0.01 0.1 0.2
control 99.03 98.78 95.10 84.24
updates 98.91 98.78 95.06 84.34

MNIST-CNN
λ̄ 0.001 0.01 0.1 0.2
control 99.47 99.01 84.16 61.10
updates 99.45 99.21 89.01 66.93

MNIST-CNN-AUG
λ̄ 0.001 0.01 0.1 0.2
control 99.54 99.33 91.47 71.55
updates 99.62 99.39 92.20 73.48

CIFAR-10
λ̄ 0.001 0.01 0.1 0.2
control 89.82 82.40 51.20 40.53
updates 90.18 87.81 66.86 52.57

CIFAR-10-AUG
λ̄ 0.001 0.01 0.1 0.2
control 92.98 91.49 74.24 59.50
updates 93.00 91.33 74.06 58.73

CIFAR-100
λ̄ 0.001 0.01 0.1 0.2
control 64.61 53.26 26.19 19.01
updates 65.55 62.59 40.92 27.38

CIFAR-100-AUG
λ̄ 0.001 0.01 0.1 0.2
control 69.78 67.76 48.47 32.77
updates 70.12 68.08 48.29 32.12

Table 5: Test accuracy on the adversarial versions of the benchmark test sets. DNN indicates
a fully-connected Deep Neural Network, CNN indicates a Convolutional Neural Network,
whilst AUG indicates that dataset augmentation was used.

is an effective manner of increasing the robustness of a model to the effects of
adversarial examples.

We conducted experiments on benchmark computer vision dataset to show
empirically, with statistical significance, that our method improves the robust-
ness against adversarial examples when compared to the Fast Gradient Sign
method, whilst not negatively affecting the normal learning performance.

Work has been done on optimization methods in Stochastic Gradient De-
scent, with the development of novel update rules that improve on the simple
update method based on a constant learning rate rate [21,16,1,8,18,10]. It is
therefore worth investigating whether these update rules may be applied to
the residual gradient in such a manner as to improve either the resilience to
adversarial examples, improve the positive effect on the learning of generalisa-
tions, or both. Another interesting element of future work would be to explore
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original adv(λ̄ = 0.001) adv(λ̄ = 0.1) pert(λ̄ = 0.001) pert(λ̄ = 0.1)

original adv(λ̄ = 0.001) adv(λ̄ = 0.1) pert(λ̄ = 0.001) pert(λ̄ = 0.1)

original adv(λ̄ = 0.001) adv(λ̄ = 0.1) pert(λ̄ = 0.001) pert(λ̄ = 0.1)

Fig. 3: Examples of adversarial images for the MNIST dataset at different values of λ̄ (adv
= adversarial image with perturbations, pert = perturbations alone, without the original
image)

original adv(λ̄ = 0.001) adv(λ̄ = 0.1) pert(λ̄ = 0.001) pert(λ̄ = 0.1)

original adv(λ̄ = 0.001) adv(λ̄ = 0.1) pert(λ̄ = 0.001) pert(λ̄ = 0.1)

original adv(λ̄ = 0.001) adv(λ̄ = 0.1) pert(λ̄ = 0.001) pert(λ̄ = 0.1)

Fig. 4: Examples of adversarial images for the CIFAR-10 dataset at different values of λ̄ (adv
= adversarial image with perturbations, pert = perturbations alone, without the original
image). The “original” image is after ZCA-whitening and preprocessing.

the effects of adding the error with respect to the input to the error function
as a regularisation term.
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epoch 1 epoch 2 epoch 3

epoch 4 epoch 5 epoch 6

epoch 7 epoch 8 epoch 9

Fig. 5: Normalized updates applied to the input at various epochs on MNIST
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