1,225 research outputs found

    A threshold phenomenon for embeddings of H0mH^m_0 into Orlicz spaces

    Full text link
    We consider a sequence of positive smooth critical points of the Adams-Moser-Trudinger embedding of H0mH^m_0 into Orlicz spaces. We study its concentration-compactness behavior and show that if the sequence is not precompact, then the liminf of the H0mH^m_0-norms of the functions is greater than or equal to a positive geometric constant.Comment: 14 Page

    Periodic solutions for completely resonant nonlinear wave equations

    Get PDF
    We consider the nonlinear string equation with Dirichlet boundary conditions uxxutt=ϕ(u)u_{xx}-u_{tt}=\phi(u), with ϕ(u)=Φu3+O(u5)\phi(u)=\Phi u^{3} + O(u^{5}) odd and analytic, Φ0\Phi\neq0, and we construct small amplitude periodic solutions with frequency \o for a large Lebesgue measure set of \o close to 1. This extends previous results where only a zero-measure set of frequencies could be treated (the ones for which no small divisors appear). The proof is based on combining the Lyapunov-Schmidt decomposition, which leads to two separate sets of equations dealing with the resonant and nonresonant Fourier components, respectively the Q and the P equations, with resummation techniques of divergent powers series, allowing us to control the small divisors problem. The main difficulty with respect the nonlinear wave equations uxxutt+Mu=ϕ(u)u_{xx}-u_{tt}+ M u = \phi(u), M0M\neq0, is that not only the P equation but also the Q equation is infinite-dimensiona

    The regularized 3D Boussinesq equations with fractional Laplacian and no diffusion

    Full text link
    In this paper, we study the 3D regularized Boussinesq equations. The velocity equation is regularized \`a la Leray through a smoothing kernel of order α\alpha in the nonlinear term and a β\beta-fractional Laplacian; we consider the critical case α+β=54\alpha+\beta=\frac{5}{4} and we assume 12<β<54\frac 12 <\beta<\frac 54. The temperature equation is a pure transport equation, where the transport velocity is regularized through the same smoothing kernel of order α\alpha. We prove global well posedness when the initial velocity is in HrH^r and the initial temperature is in HrβH^{r-\beta} for r>max(2β,β+1)r>\max(2\beta,\beta+1). This regularity is enough to prove uniqueness of solutions. We also prove a continuous dependence of the solutions on the initial conditions.Comment: 28 pages; final version accepted for publication in Journal of Differential Equation

    Existence and Uniqueness of Solutions to Nonlinear Evolution Equations with Locally Monotone Operators

    Full text link
    In this paper we establish the existence and uniqueness of solutions for nonlinear evolution equations on Banach space with locally monotone operators, which is a generalization of the classical result by J.L. Lions for monotone operators. In particular, we show that local monotonicity implies the pseudo-monotonicity. The main result is applied to various types of PDE such as reaction-diffusion equations, generalized Burgers equation, Navier-Stokes equation, 3D Leray-α\alpha model and pp-Laplace equation with non-monotone perturbations.Comment: 29 page

    Numerical Approximation using Evolution PDE Variational Splines

    Get PDF
    This article deals with a numerical approximation method using an evolutionary partial differential equation (PDE) by discrete variational splines in a finite element space. To formulate the problem, we need an evolutionary PDE equation with respect to the time and the position, certain boundary conditions and a set of approximating points. We show the existence and uniqueness of the solution and we study a computational method to compute such a solution. Moreover, we established a convergence result with respect to the time and the position. We provided several numerical and graphic examples of approximation in order to show the validity and effectiveness of the presented method

    Data-adaptive harmonic spectra and multilayer Stuart-Landau models

    Full text link
    Harmonic decompositions of multivariate time series are considered for which we adopt an integral operator approach with periodic semigroup kernels. Spectral decomposition theorems are derived that cover the important cases of two-time statistics drawn from a mixing invariant measure. The corresponding eigenvalues can be grouped per Fourier frequency, and are actually given, at each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigenvalues obey furthermore a variational principle that allows us to define naturally a multidimensional power spectrum. The eigenmodes, as far as they are concerned, exhibit a data-adaptive character manifested in their phase which allows us in turn to define a multidimensional phase spectrum. The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling effort to elemental models stacked per frequency, only coupled at different frequencies by the same noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked by Fourier frequency which can be efficiently modeled---provided the decay of temporal correlations is sufficiently well-resolved---within a class of multilayer stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators. Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time white noise, are considered. In both cases, the DAH decomposition allows for an extraction of spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of the corresponding time-evolving fields, as well as their statistics of occurrence.Comment: 26 pages, double columns; 15 figure

    A Dissipative Model for Hydrogen Storage: Existence and Regularity Results

    Full text link
    We prove global existence of a solution to an initial and boundary value problem for a highly nonlinear PDE system. The problem arises from a thermomechanical dissipative model describing hydrogen storage by use of metal hydrides. In order to treat the model from an analytical point of view, we formulate it as a phase transition phenomenon thanks to the introduction of a suitable phase variable. Continuum mechanics laws lead to an evolutionary problem involving three state variables: the temperature, the phase parameter and the pressure. The problem thus consists of three coupled partial differential equations combined with initial and boundary conditions. Existence and regularity of the solutions are here investigated by means of a time discretization-a priori estimates-passage to the limit procedure joined with compactness and monotonicity arguments

    Existence of maximizers for Sobolev-Strichartz inequalities

    Get PDF
    We prove the existence of maximizers of Sobolev-Strichartz estimates for a general class of propagators, involving relevant examples, as for instance the wave, Dirac and the hyperbolic Schrodinger flows.Comment: 10 page

    Numerical simulation of water flow around a rigid fishing net

    Full text link
    This paper is devoted to the simulation of the flow around and inside a rigid axisymmetric net. We describe first how experimental data have been obtained. We show in detail the modelization. The model is based on a Reynolds Averaged Navier-Stokes turbulence model penalized by a term based on the Brinkman law. At the out-boundary of the computational box, we have used a "ghost" boundary condition. We show that the corresponding variational problem has a solution. Then the numerical scheme is given and the paper finishes with numerical simulations compared with the experimental data.Comment: 39 page
    corecore