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Abstract

We prove the existence of maximizers of Sobolev–Strichartz estimates for a general class of propagators,
involving relevant examples, as for instance the wave, Dirac and the hyperbolic Schrödinger flows.
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1. Introduction

In the recent years, an increasing interest has been devoted to the problem of existence of
maximizers for Strichartz inequalities, and more in general Fourier restriction theorems.

Recall that, given two Banach spaces (X, | . |X), (Y, | . |Y ), and a linear and continuous operator
T ∈ L(X,Y ), it is customary to define maximizer for T any x0 ∈ X such that

‖x0‖X = 1, ‖T x0‖Y = sup
‖x‖X=1

‖T x‖Y . (1.1)
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Notice that the existence (as well as the definition) of maximizers depends on the specific norm
introduced on X and Y .

In this paper we consider the existence of maximizers for a large class of propagators of the
form eith(D), and we focus our attention to cases in which some Sobolev–Strichartz estimates of
the following type hold

∥∥eith(D)f
∥∥

Lr
t,x

� C‖f ‖Ḣ s , s > 0, r > 2, (1.2)

where in general f is a vector valued function f = (f1, . . . , fn) : R
d → C

n and

‖f ‖2
Ḣ s =

n∑
j=1

‖fj‖2
Ḣ s . (1.3)

Concerning the definition of the norm Lr
t,x in the l.h.s. of (1.2) recall that in general for any

given norm | . |Cn on C
n one can define the corresponding mixed Lebesgue norms L

p
t L

q
x for

vector valued functions F = F(t, x) : R
1+d → C

n as follows

∥∥F(t, x)
∥∥p

L
p
t L

q
x
=

∫ (∫ ∣∣F(t, x)
∣∣q
Cn dx

) p
q

dt,

where 1 � p,q � ∞. In the case p = q = r we shall write shortly

Lr
t L

r
x = Lr

t,x .

Remark 1.1. Recall that all the norms on C
n are equivalent and hence also the corresponding

norms induced on the spaces L
p
t L

q
x are equivalent. Due to this fact in (1.2) it is not necessary to

specify the norm on Cn with respect to which we are working with (of course provided that the
corresponding constant C is suitably modified). On the other hand the existence of maximizers
for the inequality (1.2) could be affected in principle by changing the corresponding norm on C

n.

Estimates of the kind (1.2) with a loss of derivatives with respect to the datum f , are natural
in some relevant cases, as for instance the wave and Dirac equations. Let us point our attention
to the Cauchy problem for the following system

{
i∂tu + h(D)u = 0,

u(0, x) = f (x),
(1.4)

where u(t, x) = (u1(t, x), . . . , un(t, x)) : R
1+d → C

n, f (x) = (f1(x), . . . , fn(x)) : R
d → C

n.
Here we denote by h(D) = F −1(h(ξ)F ), where F is the standard Fourier transform; in addi-
tion, the symbol h(ξ) ∈ Mn×n(C), n � 1, is assumed to be a matrix-valued function h(ξ) =
(hij (ξ))ij=1,...,n. In the sequel, we always make the following abstract assumptions:

(H1) there exists 0 < s < d
2 such that the problem (1.4) is globally well-posed in Ḣ s , and the

unique solution is given via propagator u(t, x) = eith(D)f (x);
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(H2) the flow eith(D) is unitary onto Ḣ s , i.e.

∥∥eith(D)f
∥∥

Ḣ s = ‖f ‖Ḣ s ∀t ∈ R,

where s is the same as in (H1), and ‖ · ‖Ḣ s is defined in (1.3).

In order to introduce our problem, assume for the moment that hi,j (ξ) is homogeneous of
some degree k > 0 for every i, j ∈ {1, . . . , n}, namely

hij (ξ) : R
d → C, h(λξ) = λkh(ξ) ∀λ > 0. (1.5)

Then, Eq. (1.4) is invariant under the scaling vλ(t, x) = u(λkt, λx); as a consequence, if a
Strichartz estimate of the following type holds

∥∥eith(D)f
∥∥

L
p
t L

q
x
� C‖f ‖Ḣ s , (1.6)

for some s > 0 and some constant C > 0, then p and q have to satisfy the following scaling
condition

k

p
+ d

q
= d

2
− s. (1.7)

Moreover, by the Sobolev embedding Ḣ s ⊂ L
2d

d−2s , for 0 < s < d/2, and the Ḣ s -preservation

∥∥eith(D)f
∥∥

L∞
t Ḣ s

x
= ‖f ‖Ḣ s

(assumption (H2) above), we get

∥∥eith(D)f
∥∥

L∞
t L

2d
d−2s
x

� C‖f ‖Ḣ s , 0 < s <
d

2
, (1.8)

for some constant C > 0. Hence, if an estimate of the type (1.6) holds with p < q , then by
interpolation with (1.8) we obtain

∥∥eith(D)f
∥∥

Lr
t,x

� C‖f ‖Ḣ s , 0 < s <
d

2
, r = 2(k + d)

d − 2s
. (1.9)

The aim of this paper is to prove that, as soon as an estimate as (1.9) holds, with a strictly positive
s > 0, then the best constant of the estimate is achieved by some maximizing functions, inde-
pendently on the norm which is fixed on the target C

n (and consequently on the corresponding
definition of the Lr

tx -norm).
The answer to analogous question about the existence of maximizers for Sobolev inequalities

is addressed to the well-known results by Aubin, Talenti and Lions [1,21,14,15]. More recently,
several authors treated separately different propagators. We firstly mention Kunze [12], who
proved the existence of maximizers of the L6

t,x -Strichartz inequality for the 1D Schrödinger
propagator. Later, Foschi [8] succeeded in characterizing the best constant of the inequality and
also the shape of the maximizers, for the 1D and 2D-Schrödinger propagators. In the same paper,
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the author treats the L6
t,x (in 2D) and the L4

t,x (in 3D) Strichartz estimates for the wave equation,

which hold to the scale of Ḣ
1
2 × Ḣ− 1

2 -initial data. Recently, Bez and Rogers [3] computed the
best constant and described the shape of maximizers of the L4

t,x -Strichartz estimate for the wave
equation, with initial data in the energy space Ḣ 1 × L2, in space dimension d = 5. We also
mention the papers by Shao [19] for the Schrödinger equation and by Bulut [5] for the wave
equation, in which the existence of maximizers for anisotropic Strichartz estimates in spaces
L

p
t L

q
x , for general couples (p, q), is also proved. Finally, Ramos [17] proves that there exist

maximizers for the isotropic Strichartz estimates for the wave equation, at the scale Ḣ
1
2 × Ḣ− 1

2 .
We mention also the papers by Bégout and Vargas [2], and Merle and Vega [16], for the analogous
about the Strichartz estimates for the Schrödinger propagator at the L2-scale.

Here we give a unified (and simple) proof of the existence of maximizers of (1.9), when s > 0,
which involves a large class of examples of propagators. Our main result is the following.

Theorem 1.1. Let assumptions (H1), (H2) be satisfied for some 0 < s < d
2 , and let h(ξ) satisfy

(1.5) for some k > 0. Moreover, assume that, for some 2 � p < q � ∞
∥∥eith(D)f

∥∥
L

p
t L

q
x
� C‖f ‖Ḣ s , (1.10)

so that, for r = 2(k+d)
d−2s

, we also have

∥∥eith(D)f
∥∥

Lr
t,x

� M‖f ‖Ḣ s , (1.11)

with

M := sup
‖f ‖Ḣ s =1

∥∥eith(D)f
∥∥

Lr
t,x

. (1.12)

Then there exists f0 ∈ Ḣ s such that

‖f0‖Ḣ s = 1,
∥∥eith(D)f0

∥∥
Lr

t,x
= M. (1.13)

Remark 1.2. We underline that in Theorem 1.1 no specific norm is fixed on the target C
n (and

hence also on the corresponding Lr
t,x norm). Nevertheless we prove in general the existence of

maximizers for the Strichartz estimate (1.11). We also underline that in Theorem 1.1 we assume
that the norm on Ḣ s is the one defined in (1.3). Indeed the Hilbert structure of the norm ‖.‖Ḣ s is
crucial in our argument.

Remark 1.3. Notice that the conditions 2 � p < q � ∞ imply that r > 2, which will be crucial
in the proof of Theorem 1.1.

Remark 1.4. As we see in the sequel, the proof of Theorem 1.1 is quite simple, and it is based on
a suitable variant of a classic result by Brézis and Lieb [4,13], see Section 2 below. On the other
hand, the technique we use does not allow us to consider the case s = 0 for which, in fact, some
extra ingredients (being typically suitable improvements of Strichartz estimates) are needed, as
substitutes of (1.10).
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We shall now give some examples of applications of the previous theorem.

Example 1.1 (Wave propagator). The Strichartz estimates for the wave propagator eit |D| (see
[10,11]), in dimension d � 2, are the following:

∥∥eit |D|f
∥∥

L
p
t L

q
x
� C‖f ‖

Ḣ
1
p − 1

q + 1
2
, (1.14)

under the admissibility condition

2

p
+ d − 1

q
= d − 1

2
, p � 2, (p, q) 	= (2,∞). (1.15)

In this case, the gap of derivatives 1
p

− 1
q

+ 1
2 � 0 is null only in the case of the energy estimate

(p, q) = (∞,2). In particular, we have

∥∥eit |D|f
∥∥

L

2(d+1)
d−1

t,x

� C‖f ‖
Ḣ

1
2
, d � 2, (1.16)

which is in fact the original estimate proved by Strichartz in [20]. More generally, by Sobolev
embedding one also obtains that

∥∥eit |D|f
∥∥

L

2(d+1)
d−1−2σ
t,x

� C‖f ‖
Ḣ

1
2 +σ

, 0 � σ <
d − 1

2
, d � 2. (1.17)

Theorem 1.1 gives a short and simple proof of the fact that, for any dimension d � 2, and 0 <

σ < d−1
2 , the best constant in (1.17) is achieved on some maximizing function f .

Example 1.2 (Dirac equation). Consider the (massless) Dirac operator

D := 1

i

3∑
j=1

αj∂j ,

which is defined in dimension d = 3. Here α1, α2, α3 ∈ M4×4(C) are the so-called Dirac matri-
ces, which are 4 × 4-hermitian matrices, αt

j = αj , j = 1,2,3. They are defined as

α1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , α2 =

⎛
⎜⎜⎝

0 0 0 −i

0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ , α3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

or equivalently αj =
(

0 σj

σj 0

)
, where σj is the j -th 2 × 2-Pauli matrix, j = 1,2,3.

Since D2 = −�I4×4, the Strichartz estimates for the massless Dirac operator are the same as
for the 3D wave equation (see [6]):

∥∥eit Df
∥∥ p q � C‖f ‖ 1 − 1 + 1 , (1.18)
Lt Lx Ḣ p q 2
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with the admissibility condition

2

p
+ 2

q
= 1, p > 2. (1.19)

In particular we have

∥∥eit Df
∥∥

L

8
2−2σ
t,x

� C‖f ‖
Ḣ

1
2 +σ

, 0 � σ < 1. (1.20)

Hence also in this case a loss of derivatives with respect to the initial datum is natural in the esti-
mate. Also in this case Theorem 1.1 applies, and it proves that there exist maximizers for (1.20),
in the range 0 < σ < 1, which at our knowledge is not a known fact.

Example 1.3 (Hyperbolic Schrödinger equation). Let us now consider the hyperbolic Schrödin-
ger operator L := ∑m

j=1 ∂2
j − ∑d

j=m+1 ∂2
j , for d � 2 and 1 � m < d . In this case, Strichartz

estimates are the same as for the Schrödinger propagator, namely

∥∥eitLf
∥∥

L
p
t L

q
x
� C‖f ‖Ḣ s , (1.21)

with the admissibility condition

2

p
+ d

q
= d

2
− s, p � 2, (p, q) 	= (2,∞). (1.22)

In particular, one has

∥∥eitLf
∥∥

L

2(d+2)
d−2s

t,x

� C‖f ‖Ḣ s , (1.23)

for any 0 � s < d
2 . The only case in which the existence of maximizers for (1.23) is known is

d = 2, s = 0. Indeed, the result by Rogers and Vargas in [18] contains all the ingredients which
are necessary to prove the profile decomposition for bounded sequences in L2, with respect to
the propagator eitL, in dimension d = 2; the existence of maximizers follows from this fact by
a general argument in the spirit of [19]. It is a matter of fact that Theorem 1.1 applies for any
d � 2 and 0 < s < d

2 , but we remark that it cannot include the case s = 0. We finally remark, our
argument is rather simple and does not involve any profile decomposition-theorems associated
to the propagator.

In the statement of Theorem 1.1, the homogeneity assumption (1.5) is required; in fact, this is
just put in order to write the explicit dependence of r on k, s in (1.11). Motivated by the case of
the wave equation, in which the homogeneity property does not hold (see Example 1.4 below),
we now state a more general version of the previous theorem.

Let us first introduce the notations

Ḣ s = Ḣ s1 × · · · × Ḣ sn, s := (s1, . . . , sn),

‖f ‖2
Ḣ s =

n∑
‖fi‖2

Ḣ si
(1.24)
i=1
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where f = (f1, . . . , fn) ∈ Ḣ s . Consider Eq. (1.4); in addition to (H1) and (H2) (where the norm
Ḣ s in this case is the more general one defined in (1.24)) assume:

(H3) there exist j ∈ {1, . . . , n} and 2 � p < q � ∞ such that, if (u1, . . . , un) solves (1.4) then

‖uj‖L
p
t L

q
x
� Cj‖f ‖Ḣ s ;

(H4) if u = (u1, . . . , un) solves (1.4), then

uλ = (
λ

d
2 −s1u1(λt, λx), . . . , λ

d
2 −snun(λt, λx)

)

solves (1.4), for any λ > 0.

Notice that, by a scaling argument, we have

1

p
+ d

q
= d

2
− sj .

Moreover, interpolating with the energy estimate one also obtains

‖uj‖Lr
t,x

� M‖f ‖Ḣ s , (1.25)

where r = 2(1+d)
d−2sj

. We have the following result.

Theorem 1.2. Assume the operator h(D) is such that (H1)–(H4) are satisfied for some s1, . . . ,

sn ∈ R, 2 � p < q � ∞, and 0 < sj < d
2 , where j is the one in (H3). Consider estimate (1.25)

and let

M := sup
‖f ‖Ḣ s =1

‖uj‖Lr
t,x

. (1.26)

Then there exists f0 ∈ Ḣ s such that

‖f0‖Ḣ s = 1, ‖vj‖Lr
t,x

= M (1.27)

where (v1, . . . , vn) = eith(D)f0.

Remark 1.5. In other words, Theorem 1.2 states that the problem of existence of maximizers can
be solved analogously for Sobolev–Strichartz estimates involving one single component of the
solution of equation (1.4). In a completely analogous way, one could treat the case of estimates
for a selected group of components of the solution. The proof of Theorem 1.2 is completely
identical to the one of Theorem 1.1: indeed it is sufficient to repeat the same argument for the
composition operator Tj (t) = πj ◦ eith(D), where πj : CN → C is the projection onto the j -th
component. We will omit the details of the proof.

We pass now to show the main application of Theorem 1.2, on solutions of the wave equation.
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Example 1.4 (Wave equation). Consider now the wave equation

{
∂2
t u − �u = 0 in R

1+d,

u(0, x) = u0(x), ∂tu(0, x) = u1(x).
(1.28)

The vector-variable V := (u, ∂tu)t is uniquely given by V (t, x) = eith(D)V0(x), where V0 =
(u0, u1)

t , and h(D) =
(

0 −i
−i� 0

)
. The Strichartz estimates for (1.28) can be immediately deduced

by (1.17), writing the solution u as

u(t, ·) = cos
(
t |D|)u0(·) + sin(t |D|)

|D| u1(·);

in particular, in terms of the vector variable V , denoting by f = (u0, u1)
t , one has

‖u‖
L

2(d+1)
d−1−2σ
t,x

� C‖f ‖
Ḣ

1
2 +σ ×Ḣ

− 1
2 +σ

, 0 � σ <
d − 1

2
, d � 2. (1.29)

Foschi [8] proved that the best constant in (1.29) is achieved, in the cases d = 2,3, σ = 0;
moreover, he can characterize the shape of the maximizers. Later, Bulut [5] proved the same
(also the anisotropic version of (1.29), with p 	= q); she can treat the range 1

2 � σ < d−1
2 , with

d � 3. More recently, Bez and Rogers [3] can prove the existence of maximizers for (1.29), and
characterize their shape, in the case d = 5, σ = 1

2 .
Now notice that Theorem 1.2 applies (with the choice j = 1 in assumption (H3)). It implies

that there exist maximizers for (1.29), for any dimension d � 2 and any 0 < σ < d−1
2 . We remark

that Ramos [17] proves a refinement of (1.29) in the case σ = 0, which in particular implies the
existence of maximizers, in this specific case of the wave equation.

The rest of the paper is devoted to the proof of Theorem 1.1.

2. Proof of Theorem 1.1

Before starting with the proof of our main theorem, we need to recall two fundamental results
which will play a role in the sequel. The first one is a variant of a well-known result obtained by
Brézis and Lieb in [4,13].

Proposition 2.1. (See [7].) Let H be a Hilbert space and T ∈ L(H,Lp(Rd)) for a suitable
p ∈ (2,∞). Let {hn}n∈N ∈ H such that:

‖hn‖H = 1; (2.1)

lim
n→∞‖T hn‖Lp(Rd ) = ‖T ‖L(H,Lp(Rd )); (2.2)

hn ⇀ h̄ 	= 0; (2.3)

T (hn) → T (h̄) a.e. in R
d . (2.4)

Then hn → h̄ in H, in particular ‖h̄‖H = 1 and ‖T (h̄)‖Lp(Rd ) = ‖T ‖L(H,Lp(Rd )).
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Remark 2.1. The main difference between Proposition 2.1 and Lemma 2.7 in [13] is that we
only need to assume weak convergence in the Hilbert space H for the maximizing sequence hn.
On the other hand the argument in [13] works for operators defined between general Lebesgue
spaces and not necessarily in the Hilbert spaces framework.

Proposition 2.1 has been proved in [7], in the scalar case. The proof in the vector-case is
completely analogous and will be omitted. The second tool we need is a byproduct of a well-
known result by Gérard in [9], in which the lack of compactness of the Sobolev embedding

Ḣ s ⊂ L
2d

d−2s is classified.

Proposition 2.2. (See [9].) Let 0 < s < d
2 , and let wn ∈ Ḣ s be a sequence such that

‖wn‖Ḣ s = 1, n = 1,2, . . . , (2.5)

inf
n�1

‖wn‖
L

2d
d−2s
x

� ε > 0. (2.6)

Then there exist a sequence of parameters λn > 0, a sequence of centers xn ∈ Rd , and a non-zero
function 0 	= v ∈ Ḣ s such that

vn(x) := λ
d
2 −s
n wn

(
λn(x − xn)

)
⇀ v, (2.7)

weakly in Ḣ s , as n → ∞.

Remark 2.2. We remark that the condition s > 0 is crucial in the previous proposition, which is
in fact false in the case s = 0.

We are now ready to perform the proof of our main theorem.

2.1. Proof of Theorem 1.1

Let M be as in (1.12) and let un ∈ Ḣ s be a maximizing sequence, i.e.

‖un‖Ḣ s = 1, lim
n→∞

∥∥eith(D)un

∥∥
Lr

t,x
= ∥∥eith(D)

∥∥
L(Ḣ s ,Lr

t,x )
= M, (2.8)

with r = 2(k+d)
d−2s

. Our aim is to prove that, by a suitable remodulation of un, we can obtain a new
maximizing sequence for which Proposition 2.1 applies. In fact, since un is uniformly bounded
in Ḣ s , it admits a weak limit, which in principle could be zero.

Notice that, by Sobolev embedding,

∥∥eith(D)un

∥∥
L∞

t L

2d
d−2s
x

� C
∥∥eith(D)un

∥∥
L∞

t Ḣ s
x

= C‖un‖Ḣ s
x

= C, (2.9)

for some constant C > 0. Moreover, by assumption (1.10), there exist 2 � p < q � ∞ such that

∥∥eith(D)un

∥∥ p q � C‖un‖ ˙ s = C, (2.10)

Lt Lx Hx



L. Fanelli et al. / Advances in Mathematics 229 (2012) 1912–1923 1921
for another constant C > 0. Hence, by (2.8), (2.10) and the Hölder inequality we can estimate,
for n sufficiently large,

M

2
�

∥∥eith(D)un

∥∥
Lr

t,x
�

∥∥eith(D)un

∥∥1− p
r

L∞
t L

2d
d−2s
x

∥∥eith(D)un

∥∥ p
r

L
p
t L

q
x

� C
p
r

∥∥eith(D)un

∥∥1− p
r

L∞
t L

2d
d−2s
x

(where we have used (1.7)). The last estimate implies that

∥∥eith(D)un

∥∥
L∞

t L

2d
d−2s
x

�
(

M

2C
p
r

) r
r−p =: ε > 0, (2.11)

for n sufficiently large. As a consequence, there exists a sequence of times tn ∈ R such that

∥∥eitnh(D)un

∥∥
L

2d
d−2s
x

� ε

2
> 0, (2.12)

for any n sufficiently large. Now denote by

wn(x) = eitnh(D)un(x),

and notice that wn is still a maximizing sequence, i.e. ‖eith(D)wn‖Lr
t,x

→ M , as n → ∞. More-
over, we have

‖wn‖Ḣ s = ‖un‖Ḣ s = 1, (2.13)

‖wn‖
L

2d
d−2s
x

� ε

2
> 0; (2.14)

hence, by Proposition 2.2, there exist two sequences λn > 0, xn ∈ R
d , and a non-zero function

0 	= v ∈ Ḣ s , such that

vn(x) := λ
d
2 −s
n wn

(
λn(x − xn)

) = λ
d
2 −s
n eitnh(D)un

(
λn(x − xn)

)
⇀ v 	= 0 (2.15)

weakly in Ḣ s , as n → ∞. By scaling, it is easy to see that vn is still a maximizing sequence,
since ‖eith(D)vn‖Lr

t,x
= ‖eith(D)wn‖Lr

t,x
.

By Proposition 2.1, in order to conclude the proof it is sufficient to prove that (2.4) holds on
vn, up to subsequences, with T = eith(D). Let us fix t ∈ R; by the continuity of eith(D) in Ḣ s , we
have

eith(D)vn ⇀ eith(D)v

weakly in Ḣ s , as n → ∞. Then, by the Rellich theorem, for any R > 0

eith(D)vn → eith(D)v (2.16)
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strongly in L2(B(R)) where B(R) = {x ∈ R
d : |x| < R}, as n → ∞. Denote by

Fn(t) :=
∫

|x|<R

∣∣eith(D)(vn − v)
∣∣2

dx = ∥∥eith(D)(vn − v)
∥∥2

L2(B(R))
.

By the Hölder inequality and Sobolev embedding we obtain

Fn(t) � CR
2s
d

∥∥eith(D)(vn − v)
∥∥2

Ḣ s � 2CR
2s
d ; (2.17)

consequently, by (2.16), the Fubini and the Lebesgue theorems we have that

R∫
−R

Fn(t) dt =
R∫

−R

∫
|x|<R

∣∣eith(D)(vn − v)
∣∣2

dx dt → 0

as n → ∞; this implies that, up to a subsequence,

eith(D)(vn − v) → 0 a.e. in B(R) × (−R,R).

The extraction of the subsequence depends on R; now repeat the argument on a discrete sequence
of radii Rn such that Rn → ∞, as n → ∞ and conclude, by a diagonal argument, that there exists
a subsequence of vnk

of vn such that

eith(D)(vn − v) → 0 a.e. in R × R
d . (2.18)

This, together with (2.15) and Proposition 2.1, concludes the proof.
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